5.1.6.7 Wilshire/Rodeo Station

The following MOSs and Build Alternatives include this station:

- MOS 2
- Alternative 1
- Alternative 2
- Alternative 3
- Alternative 4
- Alternative 5

The pedestrian, bicycle, and bus transit interface discussion for this station detailed below is applicable to all of the above listed MOS and Build Alternatives.

Pedestrian and Bicycle Interface

This station is under the center of Wilshire Boulevard, beginning just west of North Canon Drive and extending to El Camino Drive (see Figure 5-18). There are five potential station entrances: on the northwest corner of the intersection of Beverly Drive and Wilshire Boulevard; on the northeast corner of the intersection of Beverly Drive and Wilshire Boulevard; on the northwest corner of the intersection of Canon Drive and Wilshire Boulevard; on the southeast corner of the intersection of El Camino Drive and Wilshire Boulevard; and on the southwest corner of the intersection of Reeves Drive and Wilshire Boulevard.

The intersection of Beverly Drive and Wilshire Boulevards is signalized with protected left-turn phasing along Wilshire Boulevard and permissive left-turn phasing along Beverly Drive. Marked crosswalks are provided on all legs of the intersection. The intersection of Canon Drive and Wilshire Boulevards is signalized with protected left-turn phasing along Wilshire Boulevard and permissive left-turn phasing along Canon Drive. Marked crosswalks are currently provided on the north and west legs of the intersection and on the east leg after a sizable setback. The intersection of El Camino Drive and Wilshire Boulevard is signalized with a protected-permitted right-turn only phasing on El Camino Drive. Marked crosswalks are provided on the south and west legs of the intersection. The intersection of Reeves Drive and Wilshire Boulevard is unsignalized and stop-controlled in the northbound direction of Reeves Drive. There are no marked crosswalks at this intersection.

No marked bicycle lanes or other bicycle facilities are provided in the vicinity of this station location.
Figure 5-18. Wilshire/Rodeo Station
Bus Interface

Figure 5-18 also illustrates bus stop locations. Bus stops for Metro Rapid Lines 720 and 920 are located on the north side of Wilshire Boulevard west of Beverly Drive (westbound buses), and on the south side of Wilshire Boulevard east of Beverly Drive (eastbound buses). Bus stops for Metro Line 20 are located on the north side of Wilshire Boulevard, east of Beverly Drive with an additional stop west of Rodeo Drive (westbound buses) and on the south side of Wilshire Boulevard west of Beverly Drive with an additional stop west of El Camino Drive (eastbound buses). Bus stops for Metro Line 14 are on the west side of Beverly Drive, south of Wilshire Boulevard (southbound buses) and on the south side of Wilshire Boulevard west of Beverly Drive with a stop west of El Camino Drive (eastbound buses). Bus stops for Antelope Valley Transit Line 786 also serve this station area. Interface between the Westside Subway Extension and commuter transit services is expected to be minimal, because commuter services typically serve the end destination for riders.

5.1.6.8 Century City Station

The following MOSs and Build Alternatives include this station:

- MOS 2
- Alternative 1
- Alternative 2
- Alternative 3
- Alternative 4
- Alternative 5

The pedestrian, bicycle, and bus transit interface discussion for this station detailed below is applicable to all of the above listed MOS and Build Alternatives.

Pedestrian and Bicycle Interface

This station is centered under Santa Monica Boulevard, with the station box centered on Avenue of the Stars and the western end extending to Club View Drive (see Figure 5-19). There are three potential station entrances: on the southeast corner of the intersection of Santa Monica Boulevard and Avenue of the Stars; on the southwest corner of the intersection of Santa Monica Boulevard and Avenue of the Stars; and at the Westfield Mall entrance mid-block south of Santa Monica Boulevard and west of Avenue of the Stars.

The intersection of Avenue of the Stars and Santa Monica Boulevard is signalized with protected left-turn phasing in all directions and right-turn overlaps eastbound on Santa Monica Boulevard and northbound on Avenue of the Stars. Marked crosswalks are currently provided on the south and east legs of the intersection.
Figure 5-19. Century City Station
Bicycle lanes are provided on Santa Monica Boulevard. Missouri Avenue and Prosser Avenue are designated as bicycle friendly streets.

Bus Interface
Figure 5-19 also illustrates bus stop locations. Bus stops for Metro Rapid Line 704 and Line 4 are on the north side of Santa Monica Boulevard, just west of Avenue of the Stars (westbound buses) and in the center median of Santa Monica Boulevard just east of Avenue of the Stars Beverly Drive (eastbound buses). Bus stops for Metro Rapid Line 728, and Metro Lines 16/316 and 28 are on the north side of Santa Monica Boulevard, just west of Avenue of the Stars (eastbound buses) and on the east side of Avenue of the Stars south of Santa Monica Boulevard (westbound buses). Commuter service provided by Antelope Valley Transit Line 786, Commuter Express Lines 534 and 573, and Santa Clarita Transit Lines 792 and 797 also serve this station area. Interface between the Westside Subway Extension and commuter transit services is expected to be minimal, because commuter services typically serve the end destination for riders.

5.1.6.9 Century City Optional Station
The following MOSs and Build Alternatives include this station:
- MOS 2
- Alternative 1
- Alternative 2
- Alternative 3
- Alternative 4
- Alternative 5

The pedestrian, bicycle, and bus transit interface discussion for this station detailed below is applicable to all of the above listed MOS and Build Alternatives.

Pedestrian and Bicycle Interface
This station is under Constellation Boulevard, straddling Avenue of the Stars and extending westward toward MGM Drive (see Figure 5-20). There are four potential station entrances: on the northeast, southeast, and southwest corners of the intersection of Constellation Boulevard and Avenue of the Stars; and on the north side of Constellation Boulevard at MGM Drive.

The intersection of Avenue of the Stars and Constellation Boulevard is signalized with protected/permissive left-turn phasing along Constellation Boulevard, protected left-turn phasing along Avenue of the Stars, and right-turn overlap phasing eastbound on Constellation Boulevard. Marked crosswalks are currently provided on all legs of the intersection. Bicycle facilities are described above for the Century City Station.
Figure 5-20. Century City Optional Station
Bus Interface
Figure 5-20 also illustrates bus stop locations. Bus stops for Metro Lines 16/316, 28, and 728, Big Blue Bus Line 5, and Culver City Line 3, are located on the west side of MGM Drive, south of Constellation Boulevard. Big Blue Bus Line 5 and Culver City Line 3 also have stops east of Avenue of the Stars south of Constellation Boulevard. Only Big Blue Bus Line 5 has westbound stops in the station area, north of Constellation Boulevard west of MGM Drive and north of Constellation Boulevard west of Avenue of the Stars. Commuter service provided by Commuter Express Lines 534 and 573, and Santa Clarita Transit Lines 792 and 797 also serve this station area. Interface between the Westside Subway Extension and commuter transit services is expected to be minimal, because commuter services typically serve the end destination for riders.

5.1.6.10 Westwood/UCLA Station
The following Build Alternatives include this station:
- Alternative 1
- Alternative 2
- Alternative 3
- Alternative 4
- Alternative 5

The pedestrian, bicycle, and bus transit interface discussion for this station detailed below is applicable to all of the above listed Build Alternatives.

Pedestrian and Bicycle Interface
This station is located under the UCLA Lot 36 on the north side of Wilshire Boulevard between Gayley and Veteran Avenues (see Figure 5-21). There are four potential station entrances: on the northwest corner of the intersection of Gayley/Midvale Avenues and Wilshire Boulevard; on the southeast corner of the intersection of Veterans Avenue and Wilshire Boulevard; on the north end of Lot 36 near Kinross Avenue; and on the eastern end of Lot 36 near Lindbrook Drive.

The intersection of Gayley/Midvale Avenues and Wilshire Boulevard is signalized with protected left-turn phasing eastbound on Wilshire Boulevard, protected/permissive left-turn phasing northbound on Midvale Avenue, permissive phasing westbound on Wilshire Boulevard and southbound on Gayley Avenue, and right-turn overlap phasing southbound on Gayley Avenue. Marked crosswalks are provided on all legs of the intersection.
Figure 5-21. Westwood/UCLA Station—Off-Street
A bicycle path is located south of Rochester Avenue and west of Veteran Avenue. Bicycle lanes are provided on Le Conte Avenue, a short portion of Gayley Avenue, and Westwood Boulevard south of Rochester Avenue. A short portion of Tiverton and Glendon Avenues are designated as bicycle routes. In the Draft Los Angeles Bicycle Plan Update, a bicycle route is designated on Rochester Avenue between the existing bicycle path and Westwood Boulevard.

Bus Interface

Figure 5-21 also illustrates bus stop locations. Bus stops for Metro Rapid Lines 720 and 920 are at Westwood Boulevard, and are described below for the optional station location. The bus stops for Metro Line 20 and Big Blue Bus Lines 1, 2 and 3 are on the north side of Wilshire Boulevard, east of Veteran Avenue (westbound buses) and on the south side of Wilshire Boulevard west of Veteran Avenue (eastbound buses). The bus stop for Culver City Bus Rapid Line 6 is on the south side of Wilshire Boulevard west of Veteran Avenue (northbound buses). Southbound Culver City Bus Rapid Line 6 and Line 6 buses travel south on Westwood Boulevard. Commuter service provided by Antelope Valley Transit Line 786, Commuter Express Lines 431, 534 and 573, and Santa Clarita Transit Lines 792 and 797 also serve this station area. Interface between the Westside Subway Extension and commuter transit services is expected to be minimal, because commuter services typically serve the end destination for riders.

5.1.6.11 Westwood/UCLA Optional Station (Option E)

The following Build Alternatives include this station:

- Alternative 1
- Alternative 2
- Alternative 3
- Alternative 4
- Alternative 5

The pedestrian, bicycle, and bus transit interface discussion for this station detailed below is applicable to all of the above listed Build Alternatives.

Pedestrian and Bicycle Interface

This station would be located under the center of Wilshire Boulevard, immediately west of Westwood Boulevard (see Figure 5-22). There are five potential station entrances: on the northwest corner of the intersection of Gayley Avenue and Wilshire Boulevard intersection near Lot 36 and the proposed hotel development; on the sidewalks on the northwest, southwest, and southeast corners of the intersection of Westwood and Wilshire Boulevards; and on the southeast corner of the intersection of Midvale Avenue and Wilshire Boulevard.
Figure 5-22. Westwood/UCLA Optional Station
The intersection of Westwood and Wilshire Boulevards is signalized with protected left-turn phasing along Wilshire Boulevard, protected/permissive phasing northbound on Westwood Boulevard, permissive phasing southbound on Westwood Boulevard, and right-turn overlap phasing southbound on Westwood Boulevard. Marked crosswalks are provided on all legs of the intersection. The intersection of Gayley/Midvale Avenues and Wilshire Boulevard is signalized with protected left-turn phasing eastbound on Wilshire Boulevard, protected/permissive left-turn phasing northbound on Midvale Avenue, permissive phasing westbound on Wilshire Boulevard and southbound on Gayley Avenue, and right-turn overlap phasing southbound on Gayley Avenue. Marked crosswalks are provided on all legs of the intersection.

Bicycle facilities have been described above for the Westwood/UCLA Station.

Bus Interface

Figure 5-22 also illustrates bus stop locations. Bus stops for Metro Rapid Lines 720 and 920, as well as Metro Line 20, are on the north side of Wilshire Boulevard, west of Westwood Boulevard (westbound buses) and on the south side of Wilshire Boulevard east of Westwood Boulevard (eastbound buses). Bus stops for Metro Rapid Line 761 are on the north side of Wilshire Boulevard, west of Westwood Boulevard at the 720/920 Rapid stop (southbound buses) and on the east side of Westwood Boulevard south of Lindbrook Drive (northbound buses).

Bus stops for Metro Line 233 are located on the north side of Wilshire Boulevard, west of Westwood Boulevard at the 720/920 Rapid stop (southbound buses) and on the east side of Westwood Boulevard south of Lindbrook Drive (northbound buses). Bus stops for Big Blue Bus Lines 1, 2 and 3 are on the west side of Westwood Boulevard (westbound buses) north of Wilshire Boulevard, and on the east side of Westwood Boulevard (eastbound buses) south of Lindbrook Drive (westbound buses). Bus stops for Big Blue Bus Lines 8 and 12 are on the west side of Westwood Boulevard (southbound buses) north of Wilshire Boulevard, and on the east side of Westwood Boulevard (northbound buses) south of Lindbrook Drive.

Bus stops for Culver City Bus Rapid Line 6 and Line 6 are on Westwood Boulevard north of Wilshire Boulevard (southbound buses), and on the west side of Westwood Boulevard south of Lindbrook Drive (northbound buses). Commuter service provided by Antelope Valley Transit Line 786, Commuter Express Lines 431, 534 and 573, and Santa Clarita Transit Lines 792 and 797 also serve this station area. Interface between the Westside Subway Extension and commuter transit services is expected to be minimal, because commuter services typically serve the end destination for riders.

5.1.6.12 Westwood/VA Hospital Station

The following Build Alternatives include this station:

- Alternative 2
- Alternative 3
- Alternative 4
- Alternative 5

The pedestrian, bicycle, and bus transit interface discussion for this station detailed below is applicable to all of the above listed Build Alternatives.
Pedestrian and Bicycle Interface
This station is below the VA Hospital parking lot in between the I-405 exit ramp and Bonsall Avenue (see Figure 5-23) on the south side of Wilshire Boulevard. The station would have an at-grade entrance plaza with a fare collection area and pedestrian connections to VA buildings and Bonsall Avenue.

The intersection of Bonsall Avenue and Wilshire Boulevard is grade-separated, with Wilshire Boulevard passing over Bonsall Avenue. Access ramps from Wilshire Boulevard provide one-way vehicular access to Bonsall Avenue, both to the north and south of Wilshire Boulevard. The intersections of Bonsall Avenue and the Wilshire Boulevard access ramps are unsignalized, with stop controls on the Wilshire Boulevard access roads. Marked crosswalks are currently provided on the west and south legs of the intersection of Bonsall Avenue and the eastbound Wilshire Boulevard access ramp and on the west and north legs of the intersection of Bonsall Avenue and the westbound Wilshire Boulevard access ramp. A sidewalk is provided through the Bonsall Avenue underpass that provides pedestrian links between these intersections.

The bicycle path described above continues on Ohio Avenue to Purdue Avenue. San Vicente Boulevard (westbound) designated as a bicycle route west of Federal Avenue. In the Draft Los Angeles Bicycle Plan Update, a bicycle path is proposed on San Vicente Boulevard (eastbound).

The intersection of Federal Avenue and Wilshire Boulevard is signalized with protected left-turn phasing westbound on Wilshire Boulevard, permissive phasing eastbound on Wilshire Boulevard, northbound/southbound split phasing on San Vicente/Federal Avenues, and right-turn overlap phasing northbound on Federal Avenue. Marked crosswalks are provided on all legs of the intersection.

Bus Interface
The westbound bus stops for Metro Rapid Line 720, Metro Line 20 and Big Blue Bus Line 3 are on the north side of Wilshire Boulevard, in a bus-only turn out on the Wilshire Boulevard overpass of Bonsall Avenue. The eastbound bus stop is on a similar bus-only turnout on the south side of Wilshire Boulevard. The eastbound and westbound bus stops for Big Blue Bus Line 2 are located at the intersection of Bonsall Avenue and the Wilshire Boulevard access ramps. Northbound and southbound stops for Big Blue Bus Line 4 are located on Bonsall Avenue, north and south of the Wilshire Boulevard access ramps.
Figure 5-23. Westwood/VA Hospital Station
5.1.6.13 **Westwood/VA Hospital Optional Station**
The following Build Alternatives include this station:
- Alternative 2
- Alternative 3
- Alternative 4
- Alternative 5

The pedestrian, bicycle, and bus transit interface discussion for this station detailed below is applicable to all of the above listed Build Alternatives.

Pedestrian and Bicycle Interface
This station would be on the north side of Wilshire Boulevard west of Bonsall Avenue (see Figure 5-24). The station would have an at-grade entrance plaza with a fare collection area and pedestrian connections to VA buildings and Bonsall Avenue.

The signal controls and crosswalk facilities of the grade-separated intersection of Bonsall Avenue and Wilshire Boulevard have been described above for the preferred station location.

The bicycle path described above under the Westwood/UCLA Station continues on Ohio Avenue to Purdue Avenue. San Vicente Boulevard (westbound) designated as a bicycle route west of Federal Avenue. In the Draft Los Angeles Bicycle Plan Update, a bicycle path is proposed on San Vicente Boulevard (eastbound).

Bus Interface
Bus stop locations have been described above for the Westwood/VA Hospital Station location.

5.1.6.14 **Wilshire/Bundy Station**
The following Build Alternatives include this station:
- Alternative 3
- Alternative 5

The pedestrian, bicycle, and bus transit interface discussion for this station detailed below is applicable to all of the above listed Build Alternatives.

Pedestrian and Bicycle Interface
The station is under Wilshire Boulevard, east of Bundy Drive, extending just east of Saltair Avenue (see Figure 5-25). There are two potential station entrances: on the northeast and southeast corners of the intersection of Bundy Drive and Wilshire Boulevard.
Figure 5-24. Westwood/VA Hospital Optional Station
Figure 5-25. Wilshire/Bundy Station
The intersection of Bundy Drive and Wilshire Boulevard is signalized with protected/permissive phasing in all four directions. Marked crosswalks are provided on all legs of the intersection.

Bicycle lanes are provided on Ohio Avenue west of Centinela Avenue. Portions of Ohio Avenue, Texas Avenue, Arizona Avenue, Westgate Avenue, and Yale Street, are designated as bicycle routes. Portions of Ohio, Idaho, and Carmelina Avenues are designated as bicycle friendly streets.

Bus Interface
Figure 5-25 also illustrates bus stop locations. Bus stops for Metro Rapid Line 720 are located on the north side of Wilshire Boulevard, west of Bundy Drive (westbound buses) and on the south side of Wilshire Boulevard east of Bundy Drive (eastbound buses). Bus stops for Metro Line 20 and Big Blue Bus Line 2 are on the north side of Wilshire Boulevard, east of Bundy Drive (westbound buses) and on the south side of Wilshire Boulevard west of Beverly Drive (eastbound buses). Bus stops for Big Blue Bus Line 14 are on the east side of Bundy Drive south of Wilshire Boulevard (northbound buses), and on the west side of Bundy drive north of Wilshire Boulevard (southbound buses).

5.1.6.15 *Wilshire/26th Station*
The following Build Alternatives include this station:

- Alternative 3
- Alternative 5

The pedestrian, bicycle, and bus transit interface discussion for this station detailed below is applicable to all of the above listed Build Alternatives.

Pedestrian and Bicycle Interface
This station is under Wilshire Boulevard, with the eastern end east of 26th Street and the western end west of 25th Street, midway between 25th Street and Chelsea Avenue (see Figure 5-26). There are two potential station entrances: on the northeast and northwest corners of the intersection of 26th Street and Wilshire Boulevard.

The intersection of 26th Street and Wilshire Boulevard is signalized with protected/permissive phasing in all directions. Marked crosswalks are provided on all legs of the intersection.
Figure 5-26. Wilshire/26th Station
Bicycle lanes are provided on Arizona Avenue west of 26th Street and on Broadway Street. In the City of Santa Monica’s Land Use and Circulation Element (LUCE) bicycle lanes are proposed on 20th and 26th Street. Washington Avenue west of Stanford Street, Arizona Avenue east of 26th Street, and Yale Street are designated as bicycle routes. In the LUCE, additional bicycle routes are proposed for California Avenue west of 26th Street, and on 23rd Street and Chelsea Avenue.

Bus Interface

Figure 5-26 also illustrates bus stop locations. Bus stops for Metro Rapid Line 720, Metro Line 20, and Big Blue Bus Line 2 are located on the north side of Wilshire Boulevard, east of 26th Street (westbound buses) and on the south side of Wilshire Boulevard east of 26th Street (eastbound buses).

5.1.6.16 Wilshire/16th Station

The following Build Alternatives include this station:

- Alternative 3
- Alternative 5

The pedestrian, bicycle, and bus transit interface discussion for this station detailed below is applicable to all of the above listed Build Alternatives.

Pedestrian and Bicycle Interface

This station would be under Wilshire Boulevard with the eastern end just west of 16th Street and the western end west of 15th Street (see Figure 5-27). There are three potential station entrances: on the northwest and northeast corners of the intersection of 15th Street and Wilshire Boulevard, and on the south side of Wilshire Boulevard, mid-block between 15th and 16th Streets.

The intersection of 16th Street and Wilshire Boulevard is unsignalized with stop controls on northbound and southbound 16th Street. Marked crosswalks are provided on all legs of the intersection. A raised median with mid-block pedestrian refuge is provided on Wilshire Boulevard both east and west of 16th Street. The intersection of 15th Street and Wilshire Boulevard is signalized with permissive phasing in all directions. Marked crosswalks are provided on all legs of the intersection. The intersection of 14th Street and Wilshire Boulevard is signalized with permissive phasing in all directions. Marked crosswalks are provided on all legs of the intersection.
Figure 5-27. Wilshire/16th Station
Bicycle lanes are provided on Montana and California Avenues west of 17th Street, on Arizona Avenue, Broadway Street, and 7th and 17th Street south of Wilshire Boulevard. Bicycle routes are designated on Washington Avenue, 7th Street, and portions of Lincoln Boulevard. In the LUCE, bicycle lanes are proposed on 5th and 6th Street, and bicycle routes are proposed on California Avenue, Lincoln Boulevard north of Wilshire Boulevard, and 23rd Street.

Bus Interface
Figure 5-27 also illustrates bus stop locations. Bus stops for Metro Rapid Line 720 are on the north side of Wilshire Boulevard, east of 14th Street (westbound buses) and on the south side of Wilshire Boulevard west of 14th Street (eastbound buses). Bus stops for Metro Line 20 and Big Blue Bus Line 2 are on the north side of Wilshire Boulevard, east of 14th Street, with an additional stop east of 16th Street (westbound buses) and on the south side of Wilshire Boulevard west of 14th Street, with an additional stop west of 16th Street (eastbound buses).

5.1.6.17 Wilshire/4th Station
The following Build Alternatives include this station:
- Alternative 3
- Alternative 5

The pedestrian, bicycle, and bus transit interface discussion for this station detailed below is applicable to all of the above listed Build Alternatives.

Pedestrian and Bicycle Interface
This station is under Wilshire Boulevard and is a long station box that extends from just west of 6th Street on the east to just east of Ocean Avenue on the west (see Figure 5-28). There are two potential station entrances: on the northeast and southeast corners of the intersection of 4th Street and Wilshire Boulevard.

The intersection of 4th Street and Wilshire Boulevard is signalized with protected/permissive phasing westbound on Wilshire Boulevard and permissive phasing in all other directions. Marked crosswalks are provided on all legs of the intersection.

A bicycle path is provided on the beach. Bicycle lanes are provided on California Avenue, portions of Arizona Avenue, portions of Broadway Street, Ocean Avenue, 7th Street, and 11th Street. Bicycle routes are designated on Washington Avenue, and portions of 7th Street and Lincoln Boulevard. In the LUCE, bicycle lanes are proposed on portions of 5th and 6th Street, and bicycle routes are proposed on portions of 2nd and 5th Streets, and Lincoln Boulevard.
Figure 5-28. Wilshire/4th Station
Bus Interface
Figure 5-28 also illustrates bus stop locations. Bus stops for Metro Rapid Lines 720/920 and Metro Line 20 are on the north side of Wilshire Boulevard, east of 4th Street (westbound buses) and on the south side of Wilshire Boulevard west of 4th Street (eastbound buses). The bus stop for eastbound Big Blue Bus Lines 2, 3, and 4, and northbound Big Blue Bus Line 9 is on the east side of 4th Street south of Wilshire Boulevard. The bus stop for westbound Big Blue Bus Lines 2, 3, and 4, and southbound Big Blue Bus Lines Rapid 3, Line 3 and Line 9 are on the west side of 4th Street south of Wilshire Boulevard.

5.1.6.18 Hollywood/Highland Station
The following Build Alternatives include this station:
- Alternative 4
- Alternative 5

The pedestrian, bicycle, and bus transit interface discussion for this station detailed below is applicable to all of the above listed Build Alternatives.

Pedestrian and Bicycle Interface
This station is under Highland Avenue (see Figure 5-29). The station would provide a transfer option to the existing Hollywood/Highland station under Hollywood Boulevard. In addition to the existing Metro entrance on the north side of Hollywood Boulevard west of Highland Avenue, three potential station entrances are under consideration: on the northeast corner of the intersection of Highland Avenue and Selma Avenue, on the south side of Hollywood Boulevard east of Highland Avenue, and on the northwest corner of Highland Avenue and Hawthorne Avenue.

The intersection of Highland Avenue and Hollywood Boulevard is signalized with protected/permissive left-turn phasing in all directions and right-turn overlap phasing along Wilshire Boulevard. Marked crosswalks are provided on all legs of the intersection. The intersection of Highland Avenue and Hawthorn Avenue is unsignalized with stop controls on the eastbound and westbound approaches. Marked crosswalks are currently not provided on any legs of the intersection. The intersection of Highland Avenue and Selma Avenue is signalized with permissive phasing in all directions. Marked crosswalks are provided on the southern and eastern legs of the intersection.

A bicycle route is designated on Fountain Avenue west of La Brea Avenue, and Orange Drive is designated as a bicycle friendly street. In the Draft Los Angeles Bicycle Plan Update, Fountain Avenue is proposed to be designated as a bicycle route east of La Brea Avenue.
Figure 5-29. Hollywood/Highland Station
Bus Interface
Figure 5-29 also illustrates bus stop locations. Bus stops for Metro Rapid Line 780 and Metro Line 217 (westbound buses), Metro Lines 212/312 and 222 (southbound buses), and the DASH West Hollywood Line (westbound buses) are on the north side of Hollywood Boulevard, west of Highland Avenue.

Bus stops for Metro Rapid Line 780 and Metro Line 217 (eastbound buses) and Metro Lines 212/312 and 222 (northbound buses) are on the south side of Hollywood Boulevard east of Highland Avenue. Bus stops for Metro Lines 156/656 and the DASH Hollywood Line are on the east side of Highland Avenue north of Hollywood Boulevard (northbound buses) and on the west side of Highland Avenue (southbound buses). The bus stop for the DASH West Hollywood Line (eastbound) is also on the east side of Highland Avenue north of Hollywood Boulevard.

5.1.6.19 Santa Monica/La Brea Station
The following Build Alternatives include this station:

- Alternative 4
- Alternative 5

The pedestrian, bicycle, and bus transit interface discussion for this station detailed below is applicable to all of the above listed Build Alternatives.

Pedestrian and Bicycle Interface
This station is under Santa Monica Boulevard, just west of La Brea Avenue, and extends westward to the center of the Santa Monica Boulevard/Formosa Avenue intersection (see Figure 5-30). There are four potential station entrances: on the northwest, northeast, south-east and southeast corners of the intersection of La Brea Avenue and Santa Monica Boulevard.

The intersection of La Brea Avenue and Santa Monica Boulevard is signalized with protected/permissive left-turn phasing in all directions. Marked crosswalks are provided on all legs of the intersection.

A bicycle route is designated on Fountain Avenue west of La Brea Avenue, and Waring Avenue and Orange Drive are designated as bicycle friendly streets. In the Draft Los Angeles Bicycle Plan Update, Fountain Avenue is proposed to be designated as a bicycle route east of La Brea Avenue.

Bus Interface
Figure 5-30 also illustrates bus stop locations. Bus stops for Metro Rapid Line 704 and Metro Line 4, are on the north side of Santa Monica Boulevard, west of La Brea Avenue (westbound buses) and on the south side of Santa Monica Boulevard west of La Brea Avenue (eastbound buses). Bus stops for local Metro Lines 212/312 are on the east side of La Brea Avenue south of Santa Monica Boulevard (northbound buses) and on the west side of La Brea Avenue north of Santa Monica Boulevard (southbound buses). The bus stop for the West Hollywood CityLine Routes A and B are located at the bus stop in the southwest corner of the intersection. Commuter service provided by Antelope Valley Transit Line 786 also serves this station area. Interface between the Westside Subway Extension and commuter transit services is expected to be minimal, because commuter services typically serve the end destination for riders.
Figure 5-30. Santa Monica/La Brea Station
5.1.6.20 Santa Monica/Fairfax Station

The following Build Alternatives include this station:

- Alternative 4
- Alternative 5

The pedestrian, bicycle, and bus transit interface discussion for this station detailed below is applicable to all of the above listed Build Alternatives.

Pedestrian and Bicycle Interface

This station is under Santa Monica Boulevard and extends from just east of Fairfax Avenue on the west to just east of Ogden Drive on the east (see Figure 5-31). There are three potential station entrances: on the northeast and southeast corners of the intersection of Fairfax Avenue and Santa Monica Boulevard; and on the southeast corner of the intersection of Ogden Drive and Santa Monica Boulevard.

The intersection of Fairfax Avenue and Santa Monica Boulevard is signalized with protected left-turn phasing in all directions. Marked crosswalks are provided on all legs of the intersection. The intersection of Orange Grove Avenue and Santa Monica Boulevard is unsignalized with stop controls on the northbound and southbound approaches. Marked crosswalks are currently provided on the northern and western legs of the intersection. A raised median with mid-block pedestrian refuge is provided on Santa Monica Boulevard east of Orange Grove Avenue. The intersection of Ogden Drive and Santa Monica Boulevard is unsignalized with stop controls on the northbound and southbound approaches. Marked crosswalks are currently provided on the southern and eastern legs of the intersection.

A bicycle route is designated on Fountain Avenue east of Orange Grove Avenue, and Orange Grove Avenue north of Willoughby Avenue. Waring and Sweetzer Avenues are designated as bicycle friendly streets.
Figure 5-31. Santa Monica/Fairfax Station
Bus Interface

Figure 5-31 also illustrates bus stop locations. Bus stops for Metro Rapid Line 704 and Metro Line 4 are on the north side of Santa Monica Boulevard, east of Fairfax Avenue (westbound buses) and on the south side of Santa Monica Boulevard west of Fairfax Avenue (eastbound buses). Bus stops for Metro Rapid Line 780 and Metro Line 217 are located on the east side of Fairfax Avenue north of Santa Monica Boulevard (northbound buses) and on the west side of Fairfax Avenue south of Santa Monica Boulevard (southbound buses). Bus stops for Metro Line 218 are on the north side of Santa Monica Boulevard west of Fairfax Avenue (northbound buses) and on the west side of Fairfax Avenue south of Santa Monica Boulevard (southbound buses). The bus stop for the West Hollywood CityLine Route A is located at the bus stop on the northeast corner of the intersection. The bus stop for Route B is located at the northwest corner. Commuter service provided by Antelope Valley Transit Line 786 also serves this station area. Interface between the Westside Subway Extension and commuter transit services is expected to be minimal, because commuter services typically serve the end destination for riders.

5.1.6.21 Santa Monica/San Vicente Station

The following Build Alternatives include this station:

- Alternative 4
- Alternative 5

The pedestrian, bicycle, and bus transit interface discussion for this station detailed below is applicable to all of the above listed Build Alternatives.

Pedestrian and Bicycle Interface

This station would be under Santa Monica Boulevard and extend from just west of Hancock Avenue on the west to just east of Westmount Drive on the east (see Figure 5-32). There are two potential station entrances: on the northeast corner of the intersection of Hancock Avenue and Santa Monica Boulevard, and on the south side of Santa Monica Boulevard, west of Huntley Drive on Metro property.

The intersection of Hancock Avenue and Santa Monica Boulevard is unsignalized with stop controls on the northbound Metro driveway and southbound Hancock Drive. Marked crosswalks are currently provided on the northern and eastern legs of the intersection. A raised median with mid-block pedestrian refuge is provided on Santa Monica Boulevard east of Hancock Avenue.

Bicycle lanes are provided on Santa Monica Boulevard. Melrose Avenue east of Santa Monica Boulevard, and San Vicente Boulevard south of Sunset Boulevard are designated as bicycle routes.
Figure 5-32. Santa Monica/San Vicente Station
Bus Interface

Figure 5-32 also illustrates bus stop locations. Bus stops for Metro Line 4 are on the north side of Santa Monica Boulevard, west of Hancock Avenue (westbound buses) and on the south side of Santa Monica Boulevard just east of the Metro driveway. Metro Rapid Lines 704 and 705, and Metro Lines 10, 105, 305, and 550 stop at San Vicente Boulevard, three blocks to the west.

5.1.6.22 Beverly Center Area Station

The following Build Alternatives include this station:

- Alternative 4
- Alternative 5

The pedestrian, bicycle, and bus transit interface discussion for this station detailed below is applicable to all of the above listed Build Alternatives.

Pedestrian and Bicycle Interface

This station is under San Vicente Boulevard, extending from just north of Gracie Allen Drive, south of Third Street (see Figure 5-33). There are three potential station entrances: on the south side of Third Street, mid-block between San Vicente and La Cienega Boulevards; on the northeast corner of the intersection of San Vicente Boulevard and Third Street in the Beverly Center shopping center; and on the northwest corner of San Vicente Boulevard and Third Street.

The intersection of San Vicente Boulevard and Third Street is signalized with permissive left-turn phasing in all directions. Marked crosswalks are currently provided on all legs of the intersection. The intersection of Third Street and La Cienega Boulevards is signalized with protected left-turn phasing in northbound and southbound directions and signalized with protected/permissive left-turn phasing in eastbound and westbound directions. Marked crosswalks are provided on all legs of the intersection. The intersection of Third Street and Holt Avenue is unsignalized with a stop control on the northbound approach. There are no marked crosswalks in any direction at this intersection.

Beverly Boulevard west of San Vicente Boulevard, and San Vicente Boulevard north of Beverly Boulevard are designated as bicycle routes. Rosewood Avenue and Sweetzer Avenue are designated as bicycle friendly streets. In the Draft Los Angeles Bicycle Plan Update, portions of Beverly Boulevard, 3rd Street, and San Vicente Boulevard are proposed to be designated as bicycle routes.
Figure 5-33. Beverly Center Area Station
Bus Interface
Figure 5-33 also illustrates bus stop locations. Bus stops for Metro Rapid Line 705 are on the east side of La Cienega Boulevard north of 3rd Street (northbound buses) and on the west side south of 3rd Street (southbound buses). Bus stops for Metro Line 105 are on the west side of La Cienega Boulevard north of 3rd Street (northbound buses) and the east side south of 3rd Street (southbound buses). Bus stops for Metro Lines 305 and 550 are on the east side of San Vicente Boulevard north of 3rd Street (northbound buses) and on the west side of San Vicente Boulevard north of 3rd Street (southbound buses). The DASH West Hollywood and Fairfax lines stop at the northwest corner of La Cienega and 3rd Street.

5.1.7 Station Area Pedestrian/Bicycle/Bus to Rail Impact Assessment
This section presents the evaluation of the potential impacts of the Westside Subway Extension Alternatives on the interfacing transit and non-motorized (pedestrian and bicycle) systems. The forecast mode-of-access data, and the pedestrian/bicycle and transit station interface is used for this evaluation.

5.1.7.1 Methodology
The implementation of the Build Alternatives would increase transit capacity, speed of travel, reliability, and travel time certainty in the Study Area. Overall, the project would have a beneficial impact on the regional transit network and for individuals making trips via transit in the Study Area. For the transit impact analysis, the evaluation of significance under the California Environmental Quality Act (CEQA) and the National Environmental Policy Act (NEPA) was conducted at the station-area level, where the potential for localized impacts could occur. Two criteria were developed and applied at the station-area level for determination of impacts for each of the Project Alternatives:

- Would the location of project station entrances lead to excessive delays for riders transferring to interfacing bus transit lines? For the purposes of this analysis, excessive delay has been defined as the need to cross more than one roadway, or walk at least one full block to transfer between subway and bus.

- Would the location of project station entrances have the potential to increase pedestrian/bicycle safety hazards? For the purposes of this analysis, safety hazards have been defined as the need for pedestrians and bicyclists to cross roadways of more than two lanes at unsignalized locations, or at locations where marked crosswalks are not installed.

5.1.7.2 No-Build Alternative Impact Determination
By definition, the No-Build Alternative would not result in adverse transit-related impacts.

5.1.7.3 TSM Alternative Impact Determination
Criteria 1 and 2
By definition the TSM Alternative would not result in Criteria 1 and 2 impacts because no project station entrances would be constructed.
5.1.7.4 MOS and Build Alternatives

Wilshire/Crenshaw Station
The following MOSs and Build Alternatives include this station:

- MOS 1
- MOS 2
- Alternative 1
- Alternative 2
- Alternative 3
- Alternative 4
- Alternative 5

The impact determination detailed below for this station is applicable to all of the above listed MOSs and Build Alternatives.

Impact Determination

- Criterion 1—The proposed station entrance is on the southwest corner of the intersection of Crenshaw and Wilshire Boulevards. Project riders arriving on westbound Metro Rapid Line 720 or Metro Line 20, would need to cross both Wilshire and Crenshaw Boulevards to access the station entrance, and would experience excessive bus transfer delay. Therefore Criterion 1 would be met, and a significant and adverse project-related bus transfer delay impact is projected for this station.

- Criterion 2—a crosswalk is not provided on the western leg of the intersection. Therefore, project riders would experience potential safety hazards attempting to cross Wilshire Boulevard west of Crenshaw Boulevard to travel northwest or to transfer to westbound Metro Rapid Line 720 or 20 buses. Therefore Criterion 2 would be met, and a significant and adverse project-related pedestrian safety impact is projected for this station.

Wilshire/La Brea Station
The following MOSs and Build Alternatives include this station:

- MOS 1
- MOS 2
- Alternative 1
- Alternative 2
- Alternative 3
- Alternative 4
- Alternative 5

The impact determination detailed below for this station is applicable to all of the above listed MOSs and Build Alternatives.
Impact Determination

- **Criterion 1**—Potential station entrances are proposed on the northwest, southwest, and southeast corners of the intersection of Wilshire Boulevard and La Brea Avenue. Depending on which station entrance is ultimately constructed, some riders transferring to interfacing bus transit lines would need to cross both Wilshire Boulevard and La Brea Avenue. Therefore Criterion 1 could be met, and a potential significant and adverse bus transfer delay impact is projected for this station. If the station entrance on the southwest corner is constructed, riders would only need to cross either Wilshire Boulevard or La Brea Avenue, therefore a Criterion 1 impact would not be projected if this entrance is constructed.

- **Criterion 2**—Because the intersection of La Brea Avenue and Wilshire Boulevard is signalized and crosswalks are provided on all legs of the intersection, Criterion 2 would not be met, so no project-related pedestrian safety impacts are projected for this station.

Wilshire/Fairfax
The following MOSs and Build Alternatives include this station:
- MOS 1
- MOS 2
- Alternative 1
- Alternative 2
- Alternative 3
- Alternative 4
- Alternative 5

The impact determination detailed below for this station is applicable to all of the above listed MOSs and Build Alternatives.

Impact Determination

- **Criterion 1**—Potential station entrances are proposed on the northwest and northeast corners of the intersection of Wilshire Boulevard and Fairfax Avenue. If only one of the potential station entrances is constructed, some riders transferring to interfacing bus transit lines would need to cross both Wilshire Boulevard and Fairfax Avenue. Therefore Criterion 1 would be met, and a significant and adverse bus transfer delay impact is projected for this station. The northeast entrance is preferred for minimizing bus transfer delay because it is in front of the existing westbound Metro Rapid bus stop, and riders transferring to the eastbound Metro Rapid bus stop would only need to cross Wilshire Boulevard.

- **Criterion 2**—Because the intersection of Fairfax Avenue and Wilshire Boulevard is signalized and crosswalks are provided on all legs of the intersection, Criterion 2 would not be met, so no project-related pedestrian safety impact are projected for this station.

Wilshire/Fairfax (Optional Station)

Impact Determination

- **Criterion 1**—The optional station location proposes the same entrances described above for the preferred station location, but adds a potential station entrance near the southeast corner of the intersection of Orange Grove Avenue and Wilshire Boulevard. As with the
preferred station location, if only one of the potential station entrances is constructed, Criterion 1 project impacts could occur due to excessive bus transfer delay.

- **Criterion 2**—The intersection of Orange Grove Avenue and Wilshire Boulevard is unsignalized and no crosswalks across Wilshire Boulevard are provided at this intersection. Because of the location of the station entrance and the lack of crosswalks across Wilshire Boulevard, project riders would experience potential safety hazards attempting to cross Wilshire Boulevard to travel northbound, or to transfer to westbound Metro Rapid Line 720. Therefore Criterion 2 would be met, and a significant and adverse project-related pedestrian safety is projected for this station. Criterion 2 impacts would not be projected if either entrance at Fairfax Avenue is ultimately constructed.

Wilshire/La Cienega Station
The following MOSs and Build Alternatives include this station:

- MOS 2
- Alternative 1
- Alternative 2
- Alternative 3
- Alternative 4
- Alternative 5

The impact determination detailed below for this station is applicable to all of the above listed MOSs and Build Alternatives.

Impact Determination

- **Criterion 1**—Potential station entrances are proposed on the northeast corner of the intersection of Wilshire and La Cienega Boulevards, and on the southwest corner of Wilshire Boulevard and Hamilton Drive. If only one of the potential station entrances is constructed, some riders transferring to interfacing bus transit lines would need to cross both Wilshire Boulevard and La Cienega Avenue. Therefore Criterion 1 would be met, and a significant and adverse bus transfer delay impact is projected for this station. The northeast entrance is preferred for minimizing bus transfer delay because it is located closer to existing bus stops than the southern entrance.

- **Criterion 2**—The intersection of Hamilton Drive and Wilshire Boulevard is unsignalized, and no crosswalks across Wilshire Boulevard are provided at this intersection. If the southern station entrance is ultimately constructed, project riders could experience potential safety hazards attempting to cross Wilshire Boulevard at this unsignalized location to travel northbound. Therefore Criterion 2 could be met, and a potential significant and adverse project-related pedestrian safety impact is projected for this station. Criterion 2 impacts would not be projected if the northern entrance is ultimately constructed.

Wilshire/La Cienega (Optional Station)

Impact Determination

- **Criterion 1**—The optional station location proposes entrances at the northwest corner of the intersection of La Cienega and Wilshire Boulevards, and at the northwest corner of Le Doux Road and Wilshire Boulevard. Riders transferring to eastbound Metro Rapid
Line 720 and Metro Line 20, and northbound Metro Line 105 would need to cross both Wilshire and La Cienega Boulevards to access the station entrance, and would experience excessive bus transfer delay. Therefore Criterion 1 would be met, and a significant and adverse bus transfer delay impact is projected for this station. The entrance at La Cienega and Wilshire Boulevards is preferred for minimizing bus transfer delay because it is located closer to existing bus stops than the entrance at Le Doux Road and Wilshire Boulevard.

- **Criterion 2**—The intersections of Le Doux Road and Wilshire Boulevard and Stanley Drive and Wilshire Boulevard are unsignalized, and no crosswalks across Wilshire Boulevard are provided at either intersection. If the western station entrance is ultimately constructed, project riders could experience potential safety hazards attempting to cross Wilshire Boulevard at these unsignalized locations. Therefore Criterion 2 could be met, and a potential significant and adverse project-related pedestrian safety impact is projected for this station. Criterion 2 impacts would not be projected if the eastern entrance is ultimately constructed.

Wilshire/Rodeo Station
The following MOSs and Build Alternatives include this station:

- MOS 2
- Alternative 1
- Alternative 2
- Alternative 3
- Alternative 4
- Alternative 5

The impact determination detailed below for this station is applicable to all of the above listed MOS and Build Alternatives.

Impact Determination

- **Criterion 1**—Potential station entrances are proposed on the northwest corner of the intersection of Canon Drive and Wilshire Boulevard, the southwest corner of the intersection of Reeves Drive and Wilshire Boulevard, the northwest and northeast corners of the intersection of Beverly Drive and Wilshire Boulevard, and the southeast corner of El Camino Drive and Wilshire Boulevard. If only one of the potential station entrances is constructed, some riders transferring to interfacing bus transit lines would need to cross both Wilshire Boulevard and one of the intersecting streets listed above. Therefore Criterion 1 would be met, and a significant and adverse bus transfer delay impact is projected for this station. The proposed entrance on the northwest corner of Wilshire Boulevard and Beverly Drive is preferred for minimizing bus transfer delay because most of the interfacing bus lines could be accessed without needing to cross more than one street.

- **Criterion 2**—The intersection of El Camino Drive and Wilshire Boulevard is signalized with crosswalks across the western and southern legs of the intersection. There are no crosswalks on the eastern leg of the intersection of El Camino Drive and Wilshire Boulevard or on any leg of the intersection of Reeves Drive and Wilshire Boulevard (but are located to the east at Canon Drive). If either the entrance on the southeast corner of
the intersection of or El Camino Drive and Wilshire Boulevard, or the southwest corner of Reeves Drive and Wilshire Boulevard is ultimately constructed, project riders could experience potential safety hazards attempting to cross Wilshire Boulevard at locations without marked crosswalks. Therefore Criterion 2 could be met, and a potential significant and adverse project-related pedestrian safety impact is projected for this station. Criterion 2 impacts would not be projected if either of the two entrances, at Beverly Drive or Canon Drive, is ultimately constructed.

Century City Station
The following MOSs and Build Alternatives include this station:
- MOS 2
- Alternative 1
- Alternative 2
- Alternative 3
- Alternative 4
- Alternative 5

The impact determination detailed below for this station is applicable to all of the above listed MOS and Build Alternatives.

Impact Determination
- **Criterion 1**—Potential station entrances are proposed on the southwest and southeast corners of the intersection of Avenue of the Stars and Santa Monica Boulevard, and in the Westfield Century City shopping center. Depending on which station entrance is ultimately constructed, some riders transferring to interfacing bus transit lines would need to cross both Santa Monica Boulevard and Avenue of the Stars. Therefore Criterion 1 could be met, and a potential significant and adverse bus transfer delay impact is projected for this station. If the station entrance on the southeast corner is constructed, riders would only need to cross either Santa Monica Boulevard or Avenue of the Stars, therefore a Criterion 1 impact would not be projected if this entrance is constructed.

- **Criterion 2**—The intersection of Avenue of the Stars and Santa Monica Boulevard is signalized with crosswalks provided on the southern and eastern legs of the intersection. If either the entrance on the southwest corner of the intersection of Avenue of the Stars and Santa Monica Boulevard, or the entrance adjacent to the Westfield Century City shopping center is ultimately constructed, project riders could experience potential safety hazards attempting to cross Santa Monica Boulevard at locations without marked crosswalks. Therefore Criterion 2 could be met, and a potential significant and adverse project-related pedestrian safety impact is projected for this station. Criterion 2 impacts would not be projected if the entrance at the southeast corner of the intersection of Santa Monica Boulevard and Avenue of the Stars is ultimately constructed.

Century City (Optional Station)

Impact Determination
- **Criterion 1**—Potential station entrances for the optional station are proposed on the northeast, southeast, and southwest corners of the intersection of Avenue of the Stars and Constellation Boulevard, and on the north side of Constellation Boulevard at MGM Drive (at the entrance to the Westfield shopping center). Depending on which station
entrance is ultimately constructed, some riders transferring to interfacing bus transit lines would need to cross both Avenue of the Stars and Constellation Boulevard. Therefore Criterion 1 could be met, and a potential significant and adverse bus transfer delay impact is projected for this station. If the station entrance at MGM Drive is constructed, riders would only need to cross Constellation Boulevard. Therefore, a Criterion 1 impact would not be projected if this entrance is constructed.

- **Criterion 2**—The intersection of Avenue of the Stars and Constellation Boulevard is signalized with crosswalks provided on all legs of the intersection. Therefore Criterion 2 would not be met, so no project-related pedestrian safety impacts are projected for this station.

Westwood/UCLA Station
The following Build Alternatives include this station:

- Alternative 1
- Alternative 2
- Alternative 3
- Alternative 4
- Alternative 5

The impact determination detailed below for this station is applicable to all of the above listed Build Alternatives.

Impact Determination

- **Criterion 1**—The four potential station entrances are on the northwest corner of Wilshire Boulevard and Gayley Avenue, on the southeast corner of the Wilshire Boulevard and Veteran Avenue, on the north end of Lot 36 near Kinross Avenue, and on the eastern end of Lot 36 near Lindbrook Drive. Depending on which station entrance is ultimately constructed, some riders transferring to interfacing bus transit lines would need to cross both Veteran Avenue and Wilshire Boulevard. Therefore Criterion 1 could be met, and a potential significant and adverse bus transfer delay impact is projected for this station. If the station entrance on the southeast corner of the intersection of Veteran Avenue and Wilshire Boulevard is constructed, riders transferring to the interfacing bus transit lines that serve this intersection would only need to cross one of the streets, thus minimizing bus transfer delay. However, most of the bus routes that serve the Westwood area, including all of the Metro Rapid Lines have bus stops located adjacent to the intersection of Wilshire and Westwood Boulevards. Therefore, riders would need to cross Galey Avenue, and potentially Wilshire and/or Westwood Boulevard to access most interfacing bus transit. Therefore Criterion 1 would be met, and a significant and adverse bus transfer delay impact is projected for this station.

- **Criterion 2**—The intersections of Veteran Avenue and Wilshire Boulevard and Galey Avenue and Wilshire Boulevard are both signalized with crosswalks provided on all legs of both intersections. Therefore Criterion 2 would not be met, so no project-related pedestrian safety impacts are projected for this station.
Westwood/UCLA (Optional Station)

Impact Determination

Criterion 1—Potential station entrances for the optional station location are proposed on the northwest corner of the intersection of Gayley Avenue and Wilshire Boulevard, the northwest, southwest and southeast corners of the intersection of Westwood and Wilshire Boulevards, and an entrance near the southeast corner of Midvale Avenue and Wilshire Boulevard. If only one of the potential station entrances is constructed, some riders transferring to interfacing bus transit lines would need to cross Wilshire Boulevard and Gayley Avenue and/or Westwood Boulevard. Therefore Criterion 1 would be met, and a significant and adverse bus transfer delay impact is projected for this station. The proposed entrance on the northwest corner of Westwood and Wilshire Boulevards is preferred for minimizing bus transfer delay because most of the interfacing bus lines could be accessed without needing to cross more than one street.

Criterion 2—The intersections of Gayley Avenue and Wilshire Boulevard, and Westwood and Wilshire Boulevards are both signalized with crosswalks provided on all legs of both intersections. Therefore Criterion 2 would not be met, so no project-related pedestrian safety impacts are projected for this station.

Westwood/VA Hospital Station

The following Build Alternatives include this station:

- Alternative 2
- Alternative 3
- Alternative 4
- Alternative 5

The impact determination detailed below for this station is applicable to all of the above listed Build Alternatives.

Impact Determination

Criterion 1—A potential station entrance is proposed in an at-grade entrance plaza south of Wilshire Boulevard and east of Bonsall Avenue, with pedestrian walkway connections to the VA hospital building and Bonsall Avenue. With the location of the proposed entrance, riders transferring to eastbound Big Blue Bus Line 2 would need to cross Bonsall Avenue to access the bus stop. Riders transferring to eastbound Metro Rapid Line 720 and Metro Line 20 would need to cross Bonsall Avenue and the Wilshire Boulevard access ramp and travel up the stairs to Wilshire Boulevard. Riders transferring to westbound buses would need to cross under Wilshire Boulevard on the Bonsall Avenue underpass, as well as cross the westbound Wilshire Boulevard access ramps. As a result, Criterion 1 would be met.

Criterion 2—The intersection of the eastbound Wilshire Boulevard access ramp and Bonsall Avenue is unsignalized with crosswalks provided on the western and southern legs of the intersection. The intersections of Wilshire Boulevard access ramps and Bonsall Avenue have stop signs. Because the roadways are unsignalized and experience low traffic volumes, the station location would not generate pedestrian/bicycle safety hazards and Criterion 2 would not be met. Therefore no significant or adverse project-related pedestrian safety impacts are projected for this station.
Westwood/VA Hospital (Optional Station)

Impact Determination

- **Criterion 1**—The station entrance proposed for the optional station is in an at-grade entrance plaza north of Wilshire Boulevard and west of Bonsall Avenue, with pedestrian walkway connections to the VA hospital building and Bonsall Avenue. With the location of the proposed entrance, riders transferring to westbound Big Blue Bus Line 2 would need to cross Bonsall Avenue to access the bus stop. Riders transferring to westbound Metro Rapid Line 720 and Metro Line 20 would need to travel down the stairs from Wilshire Boulevard, cross both the westbound Wilshire Boulevard access ramp and Bonsall Avenue to access the bus stop. Riders transferring to eastbound buses would need to cross under Wilshire Boulevard on the Bonsall Avenue underpass, as well as cross the eastbound Wilshire Boulevard access ramps. As a result, Criterion 1 would be met.

- **Criterion 2**—The intersection of the westbound Wilshire Boulevard access ramp and Bonsall Avenue is unsignalized with crosswalks provided on the western and southern legs of the intersection. The intersections of Wilshire Boulevard access ramps and Bonsall Avenue have stop signs. Because the roadways are unsignalized and experience low traffic volumes, the station location would not generate pedestrian/bicycle safety hazards and Criterion 2 would not be met. Therefore no significant or adverse project-related pedestrian safety impacts are projected for this station.

Wilshire/Bundy Station

The following Build Alternatives include this station:

- Alternative 3
- Alternative 5

The impact determination detailed below for this station is applicable to all of the above listed Build Alternatives.

Impact Determination

- **Criterion 1**—Potential station entrances are proposed on the northeast and southeast corners of the intersection of Bundy Drive and Wilshire Boulevard. If only one of the potential station entrances is constructed, some riders transferring to interfacing bus transit lines would need to cross both Bundy Drive and Wilshire Boulevard. Therefore Criterion 1 would be met, and a significant and adverse bus transfer delay impact is projected for this station. The proposed northeast entrance is preferred for minimizing bus transfer delay because most of the interfacing bus lines could be accessed without needing to cross more than one street.

- **Criterion 2**—The intersection of Bundy Drive and Wilshire Boulevard is signalized with crosswalks provided on all legs of the intersection. Therefore Criterion 2 would not be met, so no project-related pedestrian safety impacts are projected for this station.

Wilshire/26th Station

The following Build Alternatives include this station:

- Alternative 3
- Alternative 5
The impact determination detailed below for this station is applicable to all of the above listed Build Alternatives.

Impact Determination

- **Criterion 1**—Potential station entrances are proposed on the northwest and northeast corners of the intersection of 26th Street and Wilshire Boulevard. Depending on which station entrance is ultimately constructed, some riders transferring to interfacing bus transit lines would need to cross both 26th Street and Wilshire Boulevard. Therefore Criterion 1 could be met, and a potential significant and adverse bus transfer delay impact is projected for this station. If the station entrance on the northeast corner is constructed, riders would only need to cross Wilshire Boulevard. Therefore a Criterion 1 impact would not be projected if this entrance is constructed.

- **Criterion 2**—The intersection of 26th Street and Wilshire Boulevard is signalized with crosswalks provided on all legs. Therefore Criterion 2 would not be met, and no project-related pedestrian safety impacts are projected for this station.

Wilshire/16th Station
The following Build Alternatives include this station:

- Alternative 3
- Alternative 5

The impact determination detailed below for this station is applicable to all of the above listed Build Alternatives.

Impact Determination

- **Criterion 1**—Potential station entrances are proposed on the northwest and northeast corners of the intersection of 15th Street and Wilshire Boulevard, as well as an entrance in front of the Santa Monica/UCLA Medical Center on the south side of Wilshire Boulevard east of 15th Street. Bus stops for Metro Rapid Line 720, Metro Line 20, and Big Blue Bus Line 2 are on 14th Street. Riders transferring to westbound interfacing bus transit lines would not need to cross any streets assuming the northwest entrance was constructed, but would need to walk an entire block to access buses. Riders transferring to eastbound buses would need to cross 14th Street and Wilshire Boulevard as well as walk an entire block to access buses. If other entrances were ultimately built, transferring riders would need to walk further. Therefore Criterion 1 would be met, and significant and adverse project-related bus transfer delay impacts are projected for this station. The proposed entrance on the northwest corner of the intersection of 15th Street and Wilshire Boulevard is preferred for minimizing bus transfer delay because most of the interfacing bus lines could be accessed without needing to cross more than one street.

- **Criterion 2**—The intersections of 14th and 15th Streets with Wilshire Boulevard are all signalized with crosswalks provided on all legs of both intersections. Therefore Criterion 2 would not be met, so no project-related pedestrian safety impacts are projected for this station.

Wilshire/4th Station
The following Build Alternatives include this station:

- Alternative 3
Alternative 5

The impact determination detailed below for this station is applicable to all of the above listed Build Alternatives.

Impact Determination

- **Criterion 1**—Potential station entrances are proposed on the northeast and southeast corners of the intersection of 4th Street and Wilshire Boulevard. Depending on which station entrance is ultimately constructed, some riders transferring to interfacing bus transit lines would need to cross both 4th Street and Wilshire Boulevard. Therefore Criterion 1 could be met, and a potential significant and adverse bus transfer delay impact is projected for this station. If the station entrance on the southeast corner is constructed, riders would only need to cross Wilshire Boulevard, or 4th Street. Therefore a Criterion 1 impact would not be projected if this entrance is constructed.

- **Criterion 2**—The intersection of 4th Street and Wilshire Boulevard is signalized with crosswalks provided on all legs of the intersection. Therefore Criterion 2 would not be met, so no project-related pedestrian safety impacts are projected for this station.

Hollywood/Highland Station

The following Build Alternatives include this station:

- Alternative 4
- Alternative 5

The impact determination detailed below for this station is applicable to all of the above listed Build Alternatives.

Impact Determination

- **Criterion 1**—Potential station entrances are proposed on the south side of Hollywood Boulevard east of Highland Avenue, the northwest corner of the intersection of Highland and Hawthorne Avenues, and the northeast corner of Highland Avenue and Selma Place. The station could also be accessed via the existing Metro Red Line Station entrance just west of the northwest corner of the intersection of Highland Avenue and Hollywood Boulevard. Bus stops for the numerous lines that serve the station area are located on or near the northwest, northeast and southeast corners of the intersection of Highland Avenue and Hollywood Boulevard. If the potential entrance on the south side of Hollywood Boulevard east of Highland Avenue is constructed, (in addition to the existing Metro Red Line entrance), riders transferring to the interfacing bus transit lines would need to cross either Highland Avenue or Hollywood Boulevard, and Criterion 1 would not be met. If the entrance at the northwest corner of the intersection of Highland and Hawthorne Avenues is constructed (in addition to the existing Metro Red Line entrance), riders transferring to the interfacing bus transit lines would need to cross either Highland Avenue or Hollywood Boulevard. However, because the Highland/Hawthorne entrance would be up to a block south of Hollywood Boulevard, Criterion 1 would be met, and significant and adverse project-related bus transfer delay impacts are projected for this station. Criterion 1 would also be met for the entrance on the northeast corner of Highland and Selma, because it would require crossing several streets to transfer to connecting bus service, and it is a full block south of Hollywood Boulevard.
Criterion 2—The intersection of Highland Avenue and Hollywood Boulevard is signalized with crosswalks provided on all legs of both intersections. The intersection of Highland and Hawthorne Avenues is unsignalized, with stop controls on eastbound and westbound Hawthorne Avenue. No marked crosswalks are provided at this intersection. The intersection of Highland Avenue and Selma Place is signalized with crosswalks provided on the southern and eastern legs of the intersection. Because the intersection of Highland and Hawthorne Avenues is unsignalized and without crosswalks, and because the northern leg of the intersection of Highland Avenue and Selma Place (where the potential station entrances would be located) does not have a marked crosswalk, project riders could experience potential safety hazards attempting to cross Highland Avenue at these locations. Therefore Criterion 2 would be met for these entrances, and a significant and adverse project-related pedestrian safety impact could occur if these station entrances are constructed. Criterion 2 impacts would not be projected for the existing Red Line station entrance, nor are they projected for the potential entrance on the south side of Hollywood Boulevard east of Highland Avenue—therefore; it is the recommended station entrance.

Santa Monica/La Brea Station
The following Build Alternatives include this station:
- Alternative 4
- Alternative 5

The impact determination detailed below for this station is applicable to all of the above listed Build Alternatives.

Impact Determination
- Criterion 1—Potential station entrances are proposed on all four corners of the intersection of La Brea Avenue and Santa Monica Boulevard. Depending on which station entrance is ultimately constructed, some riders transferring to interfacing bus transit lines would need to cross both La Brea Avenue and Santa Monica Boulevard. Therefore Criterion 1 could be met, and a potential significant and adverse bus transfer delay impact is projected for this station. If the station entrance on the southwest corner is constructed, riders would only need to cross La Brea Avenue or Santa Monica Boulevard. Therefore a Criterion 1 impact would not be projected if this entrance is constructed.

- Criterion 2—The intersection of La Brea Avenue and Santa Monica Boulevard is signalized with crosswalks provided on all legs of both intersections. Therefore Criterion 2 would not be met, so no project-related pedestrian safety impacts are projected for this station.

Santa Monica/Fairfax Station
The following Build Alternatives include this station:
- Alternative 4
- Alternative 5

The impact determination detailed below for this station is applicable to all of the above listed Build Alternatives.
Impact Determination

Criterion 1—Potential station entrances are proposed on the northeast and southeast corners of the intersection of Fairfax Avenue and Santa Monica Boulevard. If only one of the potential station entrances is constructed, some riders transferring to interfacing bus transit lines would need to cross both Fairfax Avenue and Santa Monica Boulevard. Therefore Criterion 1 would be met, and a significant and adverse bus transfer delay impact is projected for this station. The proposed southeast entrance is preferred for minimizing bus transfer delay because most of the interfacing bus lines (including all Metro Rapid stops) could be accessed without needing to cross more than one street.

Criterion 2—The intersection of Fairfax Avenue and Santa Monica Boulevard is signalized with crosswalks provided on all legs of the intersection. Therefore Criterion 2 would not be met, so no project-related pedestrian safety impacts are projected for this station.

Santa Monica/San Vicente Station

The following Build Alternatives include this station:

- Alternative 4
- Alternative 5

The impact determination detailed below for this station is applicable to all of the above listed Build Alternatives.

Impact Determination

Criterion 1—Potential station entrances are proposed on the northeast corner of the intersection of Hancock Avenue and Santa Monica Boulevard, and on the south side of Santa Monica Boulevard, west of Huntley Drive on Metro property. If either potential entrance is constructed, riders transferring to both eastbound and westbound Metro Line 4 would only need to cross Santa Monica Boulevard, thus minimizing bus transfer delay. However, most of the bus routes that serve the proposed station area, including all of the Metro Rapid Lines have bus stops located at San Vicente Boulevard, three blocks to the west. Therefore Criterion 1 would be met, and significant and adverse project-related bus transfer delay impacts are projected for this station.

Criterion 2—The intersection of Hancock Avenue/Metro Driveway and Santa Monica Boulevard is unsignalized with stop controls on the northbound and southbound approaches. Marked crosswalks are installed on the northern and the eastern legs of the intersection. Therefore Criterion 2 would be met, and significant and adverse project-related pedestrian safety impacts are projected for this station.

Beverly Center Area Station

The following Build Alternatives include this station:

- Alternative 4
- Alternative 5

The impact determination detailed below for this station is applicable to all of the above listed Build Alternatives.
Impact Determination

- **Criterion 1**—Potential station entrances are proposed on the northwest, northeast and southeast corners of the intersection of San Vicente Boulevard and 3rd Street. If only one of the potential station entrances is constructed, some riders transferring to interfacing bus transit lines would need to cross both La Cienega Boulevard and 3rd Street. Therefore Criterion 1 would be met, and a significant and adverse bus transfer delay impact is projected for this station. The proposed southeast entrance is preferred for minimizing bus transfer delay because more interfacing bus lines operating on La Cienega Boulevard could be accessed without needing to cross more than one street.

- **Criterion 2**—The intersections of San Vicente Boulevard and 3rd Street and La Cienega Boulevard and 3rd Street are both signalized with crosswalks provided on all legs of each intersection. Therefore Criterion 2 would not be met, so no project-related pedestrian safety impacts are projected for this station.

5.1.7.5 Impact Summary

Table 5-7 summarizes the impact determination for each Build Alternative. Because it has the most stations of any alternative, Alternative 5 is projected to have the most impacted station areas, with a total of 12 impacted stations. At some locations, alternatives to added or relocated entrances could be considered. Further information is provided in Section 7—Mitigation Measures.

Table 5-7. Transit and Non-Motorized Impact Summary

<table>
<thead>
<tr>
<th>Station</th>
<th>MOS 1</th>
<th>MOS 2</th>
<th>Alt 1</th>
<th>Alt 2</th>
<th>Alt 3</th>
<th>Alt 4</th>
<th>Alt 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Wilshire/Crenshaw Station</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
</tr>
<tr>
<td>2. Wilshire/La Brea Station</td>
<td>Potential *</td>
</tr>
<tr>
<td>3. Wilshire/Fairfax Station</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
</tr>
<tr>
<td>Optional Station</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
</tr>
<tr>
<td>4. Wilshire/La Cienega Station</td>
<td>—</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
</tr>
<tr>
<td>Optional Station</td>
<td>—</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
</tr>
<tr>
<td>5. Wilshire/Rodeo Station</td>
<td>—</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
</tr>
<tr>
<td>6. Century City Station</td>
<td>—</td>
<td>Potential *</td>
<td>Potential *</td>
<td>Potential *</td>
<td>Potential *</td>
<td>Potential *</td>
<td>Potential *</td>
</tr>
<tr>
<td>Optional Station</td>
<td>—</td>
<td>Potential *</td>
<td>Potential *</td>
<td>Potential *</td>
<td>Potential *</td>
<td>Potential *</td>
<td>Potential *</td>
</tr>
<tr>
<td>7. Westwood/UCLA Station</td>
<td>—</td>
<td>—</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
</tr>
<tr>
<td>Optional Station</td>
<td>—</td>
<td>—</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
</tr>
<tr>
<td>8. Westwood/VA Hospital Station</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
</tr>
<tr>
<td>Optional Station</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
</tr>
<tr>
<td>9. Wilshire/Bundy Station</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Impacted</td>
<td>—</td>
<td>Impacted</td>
</tr>
<tr>
<td>10. Wilshire/26th Station</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Potential *</td>
<td>—</td>
<td>Potential *</td>
</tr>
<tr>
<td>11. Wilshire/16th Station</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Impacted</td>
<td>—</td>
<td>Impacted</td>
</tr>
<tr>
<td>12. Wilshire/4th Station</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Potential *</td>
<td>—</td>
<td>Potential *</td>
</tr>
<tr>
<td>13. Hollywood/Highland Station</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Potential *</td>
<td>Potential *</td>
<td>Potential *</td>
</tr>
<tr>
<td>14. Santa Monica/La Brea Station</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Potential *</td>
<td>Potential *</td>
<td>Potential *</td>
</tr>
<tr>
<td>15. Santa Monica/Fairfax Station</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
</tr>
<tr>
<td>16. Santa Monica/San Vicente Station</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
</tr>
<tr>
<td>17. Beverly Center Area Station</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Impacted</td>
<td>Impacted</td>
<td>Impacted</td>
</tr>
<tr>
<td>Total Impacted Station Areas **</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>11</td>
</tr>
</tbody>
</table>

Source: Fehr & Peers, April 2010

Note: * Station area would not be impacted if recommended entrance is constructed. Otherwise station area would be impacted. ** Impact totals reflect the fact that either the preferred station or the optional station will be built at station areas, not both.
5.1.8 Mitigation Measures

This section details the measures proposed to mitigate the significant and adverse project-related impacts to less than significant levels.

5.1.8.1 Wilshire/Crenshaw Station

This station area is expected to be impacted under the following MOSs and Build Alternatives:
- MOS 1
- MOS 2
- Alternative 1
- Alternative 2
- Alternative 3
- Alternative 4
- Alternative 5

To mitigate impacts under these MOSs and Build Alternatives due to excessive bus transfer delay, the following mitigation measures should be implemented:
- To the extent it is feasible, relocate or consolidate bus stops to ensure that transfers between bus transit and the subway do not require crossing more than one roadway

To mitigate impacts under these MOSs and Build Alternatives due to pedestrian safety hazards, the following mitigation measure should be implemented:
- Install a marked crosswalk on the western leg of the intersection

5.1.8.2 Wilshire/La Brea Station

Depending on which station entrance is ultimately constructed, this station area has the potential to be impacted under the following MOSs and Build Alternatives:
- MOS 1
- MOS 2
- Alternative 1
- Alternative 2
- Alternative 3
- Alternative 4
- Alternative 5

If the southwest entrance is not constructed, to mitigate impacts due to excessive bus transfer delay, the following mitigation measure should be implemented:
- To the extent it is feasible, relocate or consolidate bus stops to ensure that transfers between bus transit and the subway do not require crossing more than one roadway
5.1.8.3 **Wilshire/Fairfax Station**
This station area is expected to be impacted under the following MOSs and Build Alternatives:
- MOS 1
- MOS 2
- Alternative 1
- Alternative 2
- Alternative 3
- Alternative 4
- Alternative 5

To mitigate impacts under these MOSs and Build Alternatives due to excessive bus transfer delay, the following mitigation measures should be implemented:

- To the extent it is feasible, relocate or consolidate bus stops to ensure that transfers between bus transit and the subway do not require crossing more than one roadway.

5.1.8.4 **Wilshire/Fairfax Optional Station**
This station area is expected to be impacted under the following MOSs and Build Alternatives:
- MOS 1
- MOS 2
- Alternative 1
- Alternative 2
- Alternative 3
- Alternative 4
- Alternative 5

To mitigate impacts under these MOSs and Build Alternatives due to excessive bus transfer delay, the following mitigation measures should be implemented:

- To the extent it is feasible, relocate or consolidate bus stops to ensure that transfers between bus transit and the subway do not require crossing more than one roadway.

To mitigate impacts under these MOSs and Build Alternatives due to pedestrian safety hazards, the following mitigation measure should be implemented:

- Relocate the potential station entrance near the southeast corner of Orange Grove Avenue and Wilshire Boulevard to the southeast corner of Fairfax Avenue. If this mitigation measure is determined to be infeasible, an alternative mitigation measure would be to not construct this potential station entrance.

5.1.8.5 **Wilshire/La Cienega Station**
This station area is expected to be impacted under the following MOS and Build Alternatives:
To mitigate impacts under MOS 2 and the Build Alternatives due to excessive bus transfer delay, the following mitigation measures should be implemented:

- To the extent it is feasible, relocate or consolidate bus stops to ensure that transfers between bus transit and the subway do not require crossing more than one roadway

To mitigate potential impacts under the MOS 2 and the Build Alternatives due to pedestrian safety hazards, the following mitigation measure should be implemented:

- Construct the entrance on the northeast corner of the intersection of La Cienega and Wilshire Boulevards in lieu of the potential entrance proposed at the southwest corner of the intersection of Hamilton Drive and Wilshire Boulevard.

- Alternatively, relocate the entrance at Hamilton Drive and Wilshire Boulevard to the southeast corners of La Cienega and Wilshire Boulevards. If this mitigation measure is determined to be infeasible, signalize the intersection of Hamilton Drive and Wilshire Boulevard and install marked crosswalks on all four legs of the intersection.

5.1.8.6 Wilshire/La Cienega Optional Station

This station area is expected to be impacted under the following MOS and Build Alternatives:

- MOS 2
- Alternative 1
- Alternative 2
- Alternative 3
- Alternative 4
- Alternative 5

To mitigate impacts under MOS 2 and the Build Alternatives due to excessive bus transfer delay, the following mitigation measures should be implemented:

- To the extent it is feasible, relocate or consolidate bus stops to ensure that transfers between bus transit and the subway do not require crossing more than one roadway

To mitigate potential impacts under MOS 2 and the Build Alternatives due to pedestrian safety hazards, the following mitigation measures should be implemented:

- Construct the entrance on the northwest corner of the intersection of La Cienega and Wilshire Boulevards in lieu of the potential entrance proposed at the northwest corner of the intersection of Le Doux Road and Wilshire Boulevard.
5.0—Environmental Consequences—Mitigation Measures

5.1.8.7 Wilshire/Rodeo Station

This station area is expected to be impacted under the following MOS and Build Alternatives:

- MOS 2
- Alternative 1
- Alternative 2
- Alternative 3
- Alternative 4
- Alternative 5

To mitigate impacts under MOS 2 and the Build Alternatives due to excessive bus transfer delay, the following mitigation measures should be implemented:

- To the extent it is feasible, relocate or consolidate bus stops to ensure that transfers between bus transit and the subway do not require crossing more than one roadway

To mitigate potential impacts due to pedestrian safety hazards, the following mitigation measures should be implemented:

- Construct one or more of the potential entrances at Beverly and Canon Drives in lieu of the potential entrances proposed at the southeast corner of El Camino Drive and Wilshire Boulevard, and the southwest corner of Reeves Drive and Wilshire Boulevard

5.1.8.8 Century City Station

Depending on which station entrance is ultimately constructed, this station area has the potential to be impacted under MOS 2 and the Build Alternatives:

- MOS 2
- Alternative 1
- Alternative 2
- Alternative 3
- Alternative 4
- Alternative 5

If the entrance at the southeast corner of the intersection of Avenue of the Stars and Santa Monica Boulevard is not constructed, to mitigate potential impacts due to excessive bus transfer delay, the following mitigation measure should be implemented:

- To the extent it is feasible, relocate or consolidate bus stops to ensure that transfers between bus transit and the subway do not require crossing more than one roadway

To mitigate potential impacts due to pedestrian safety hazards, the following mitigation measures should be implemented:

- Alternatively, signalize the intersection of Le Doux Road and Wilshire Boulevard and install marked crosswalks on all four legs of the intersection.
- Construct the entrance at the southeast corner of the intersection of Avenue of the Stars and Santa Monica Boulevard in lieu of the other potential entrances.
- If the above mitigation measure is determined to be unfeasible, stripe a crosswalk on the western leg of the intersection of Avenue of the Stars and Santa Monica Boulevard.
- If striping a crosswalk is determined to be unfeasible due to the roadway geometry of Santa Monica Boulevard, construct a pedestrian underpass across Santa Monica Boulevard.

5.1.8.9 Century City Optional Station

Depending on which station entrance is ultimately constructed, this station area has the potential to be impacted under MOS 2 and the Build Alternatives:

- MOS 2
- Alternative 1
- Alternative 2
- Alternative 3
- Alternative 4
- Alternative 5

If the entrance MGM Drive and Constellation Boulevard is not constructed, to mitigate potential impacts due to excessive bus transfer delay, the following mitigation measure should be implemented:

- To the extent it is feasible, relocate or consolidate bus stops to ensure that transfers between bus transit and the subway do not require crossing more than one roadway.

5.1.8.10 Westwood/UCLA Station

This station area is expected to be impacted under the following Build Alternatives:

- Alternative 1
- Alternative 2
- Alternative 3
- Alternative 4
- Alternative 5

To mitigate impacts under these Build Alternatives due to excessive bus transfer delay, the following mitigation measures should be implemented:

- To the extent it is feasible, relocate and consolidate Westwood Boulevard bus stops to Galey Avenue to ensure that transfers between bus transit and the subway do not require crossing more than one roadway.
- Alternatively, construct station entrance(s) at the intersection of Westwood and Wilshire Boulevards in lieu of station entrances at Galey or Veteran Avenues.

5.1.8.11 Westwood/UCLA Optional Station

This station area is expected to be impacted under the following Build Alternatives:

- Alternative 1
To mitigate impacts under these Build Alternatives due to excessive bus transfer delay, the following mitigation measures should be implemented:

- To the extent it is feasible, relocate or consolidate bus stops to ensure that transfers between bus transit and the subway do not require crossing more than one roadway.

5.1.8.12 Westwood/VA Hospital Station
This station area is expected to be impacted under the following Build Alternatives:

- Alternative 2
- Alternative 3
- Alternative 4
- Alternative 5

To mitigate impacts under these Build Alternatives due to excessive bus transfer delay, the following mitigation measures should be implemented:

- Relocate bus stops currently located in bus turn-outs on Wilshire Boulevard to the Wilshire Boulevard access ramps in front of the station entrance
- Construct a bus turnaround in front of the station to enable westbound buses to stop in front of the station entrance, before circling around, traveling north on Bonsall Avenue, and turning left on the access ramps to continue traveling west on Wilshire Boulevard

5.1.8.13 Westwood/VA Hospital Optional Station
This station area is expected to be impacted under the following Build Alternatives:

- Alternative 2
- Alternative 3
- Alternative 4
- Alternative 5

To mitigate impacts under these Build Alternatives due to excessive bus transfer delay, the following mitigation measures should be implemented:

- Relocate bus stops currently located in bus turn-outs on Wilshire Boulevard to the Wilshire Boulevard access ramps in front of the station entrance
- Construct a bus turnaround in front of the station to enable eastbound buses to stop in front of the station entrance, before circling around, traveling south on Bonsall Avenue, and turning right on the access ramps to continue traveling east on Wilshire Boulevard

5.1.8.14 Wilshire/Bundy Station
This station area is expected to be impacted under the following Build Alternatives:
To mitigate impacts under these Build Alternatives due to excessive bus transfer delay, the following mitigation measures should be implemented:

5.1.8.15 Wilshire/26th Station
Depending on which station entrance is ultimately constructed, this station area has the potential to be impacted under the following Build Alternatives:

- Alternative 3
- Alternative 5

If the entrance at the northeast corner of the intersection of 26th Street and Wilshire Boulevard is not constructed, to mitigate potential impacts due to excessive bus transfer delay, the following mitigation measure should be implemented:

- To the extent it is feasible, relocate or consolidate bus stops to ensure that transfers between bus transit and the subway do not require crossing more than one roadway

5.1.8.16 Wilshire/16th Station
This station area is expected to be impacted under the following Build Alternatives:

- Alternative 3
- Alternative 5

To mitigate impacts under these Build Alternatives due to excessive bus transfer delay, the following mitigation measure should be implemented:

- To the extent it is feasible, relocate bus stops at 14th Street and Wilshire Boulevard to 15th Street and Wilshire Boulevard in front of potential station entrances.

5.1.8.17 Wilshire/4th Station
Depending on which station entrance is ultimately constructed, this station area has the potential to be impacted under the following Build Alternatives:

- Alternative 3
- Alternative 5

If the entrance at the southeast corner of the intersection of 4th Street and Wilshire Boulevard is not constructed, to mitigate potential impacts due to excessive bus transfer delay, the following mitigation measure should be implemented:

- To the extent it is feasible, relocate or consolidate bus stops to ensure that transfers between bus transit and the subway do not require crossing more than one roadway

5.1.8.18 Hollywood/Highland Station
Depending on which station entrance is ultimately constructed, this station area has the potential to be impacted under the following Build Alternatives:
Alternative 4

Alternative 5

If the entrance on the south side of Hollywood Boulevard east of Highland Avenue is not constructed, to mitigate potential impacts due to excessive bus transfer delay, the following mitigation measure should be implemented:

- To the extent it is feasible, relocate or consolidate bus stops to ensure that transfers between bus transit and the subway do not require crossing more than one roadway

If the entrance on the south side of Hollywood Boulevard east of Highland Avenue is not constructed, to mitigate potential impacts due to pedestrian safety hazards, the following mitigation measures should be implemented:

- Shift the potential Highland Avenue entrance near Hawthorne Avenue to the southwest corner of the intersection of Highland Avenue and Hollywood Boulevard to the extent feasible. If entrances near the corners of the intersection are not feasible, shift the potential entrance as far to the north as possible.

- If the potential entrance near Selma Place is constructed, install a marked crosswalk on the northern leg of the intersection of Highland Avenue and Selma Place

5.1.8.19 Santa Monica/La Brea Station
Depending on which station entrance is ultimately constructed, this station area has the potential to be impacted under the following Build Alternatives:

- Alternative 4

- Alternative 5

If the entrance at the southwest corner of the intersection of La Brea Avenue and Santa Monica Boulevard is not constructed, to mitigate potential impacts due to excessive bus transfer delay, the following mitigation measure should be implemented:

- To the extent it is feasible, relocate or consolidate bus stops to ensure that transfers between bus transit and the subway do not require crossing more than one roadway

5.1.8.20 Santa Monica/Fairfax Station
This station area is expected to be impacted under the following Build Alternatives:

- Alternative 4

- Alternative 5

To mitigate impacts under these Build Alternatives due to excessive bus transfer delay, the following mitigation measures should be implemented:

- To the extent it is feasible, relocate or consolidate bus stops to ensure that transfers between bus transit and the subway do not require crossing more than one roadway

5.1.8.21 Santa Monica/San Vicente Station
This station area is expected to be impacted under the following Build Alternatives:

- Alternative 4
Alternative 5

To mitigate impacts under these Build Alternatives due to excessive bus transfer delay, the following mitigation measures should be implemented:

- Shift potential entrance(s) to the northeast and/or southeast corners of the intersection of San Vicente and Santa Monica Boulevards to the extent feasible
- If relocating potential entrances to San Vicente is not feasible, relocate or consolidate bus stops to ensure that transfers between bus transit and the subway do not require crossing more than one roadway

To mitigate impacts under these Build Alternatives due to pedestrian safety hazards, the following mitigation measures should be implemented:

- Shift potential entrances to the northeast and southeast corners of the intersection of San Vicente and Santa Monica Boulevards to the extent feasible
- If relocating potential entrances to San Vicente is not feasible, signalize the intersection of Hancock Avenue and Santa Monica Boulevard

5.1.8.22 Beverly Center Area Station

This station area is expected to be impacted under the following Build Alternatives:

- Alternative 4
- Alternative 5

To mitigate impacts under these Build Alternatives due to excessive bus transfer delay, the following mitigation measures should be implemented:

- To the extent it is feasible, relocate or consolidate bus stops to ensure that transfers between bus transit and the subway do not require crossing more than one roadway

At this time it is not known which entrances will be constructed, so this potential mitigation measure does not reference specific station entrances.

5.1.9 CEQA Determination

5.1.9.1 No-Build Alternative Impact Determination

By definition, the No-Build Alternative would not result in significant transit-related impacts.

5.1.9.2 TSM Alternative Impact Determination

Criteria 1 and 2

By definition the TSM Alternative would not result in Criteria 1 and 2 significant impacts because no project station entrances would be constructed.

5.1.9.3 MOS and Build Alternatives

The impacts described above in the NEPA analysis are also applicable to the CEQA analysis of significant impacts. All mitigation measures recommended for each station area would apply under CEQA.
5.1.9.4 Impacts Remaining After Mitigation

After implementation of the mitigation measures detailed above for each station location, project-related impacts to the interfacing transit and non-motorized facilities and services would be mitigated to less-than significant levels for all Project Alternatives.

5.2 Traffic

By 2035, the population and employment density in the Study Area will increase by 10 and 12 percent, respectively. This will result in increases in the overall delay of motorists attempting to travel within and through the Westside. Intersections currently operating at deficient levels of service will worsen as a result of increased vehicular traffic, few planned transportation improvements and the lack of grade-separated transit alternatives throughout the Study Area.

The high population and employment densities and peak period levels of congestion in the Study Area create a viable setting for the Westside Subway Extension. The proposed Westside Subway Extension has the ability to reduce vehicle trips and congestion within the Study Area and the region as a whole. The availability of a grade-separated transit option on the Westside can change drivers’ mode choice and reduce vehicle trips on arterials that are already experiencing traffic over their intended capacity. A detailed traffic operations analysis was conducted for 192 key intersections to forecast future congestion levels with anticipated regional growth and similar transit service as today (No Build) and the benefits of the Westside Subway Extension on vehicular congestion (Build Alternatives).

This section develops future traffic conditions in the Study Area and begins with a brief discussion of regional and Study Area performance measures projected using the Metro Regional Travel Demand Model. For the assessment of Study Area intersection performance, the Metro Regional Travel Demand Model, in combination with a customized sub-area VISUM model, were used to develop intersection turning movement forecasts, while corresponding levels of service were analyzed with Synchro. Synchro is common traffic simulation software based on procedures outlined in the Transportation Research Board’s 2000 Highway Capacity Manual (HCM). The model development, including validation and calibration, and the forecasted turning movements per alternative, along with future traffic operating conditions, are detailed in this section.

5.2.1 Regional Transportation Performance Measures

The projected regional travel changes that would result from the different Project Alternatives compared to the Future Year 2035 No Build Scenario both for Los Angeles County as a whole as well as for the Study Area have been summarized in Table 5-8. These data are direct outputs of the Metro Regional Travel Demand Model. Compared to the Future Year 2035 No Build Alternative, the project Build Alternatives would not result in major changes in countywide or Study Area performance measures.

Even without major changes in countywide or Study Area performance measures, the data indicates that the Build Alternatives would have beneficial effects on regional transportation network by reducing VMT, VHT, and peak hour vehicle trips. Overall, there is little percentage change between the Build Alternatives and the No Build/TSM Alternatives because total travel demand within the county and Study Area is so significantly greater than the comparatively small reduction affected by a Build Alternative.
Table 5-8. Year 2035 Performance Measures for Project Alternatives

<table>
<thead>
<tr>
<th>Measure</th>
<th>No Build</th>
<th>TSM</th>
<th>Alt 1</th>
<th>Alt 2</th>
<th>Alt 3</th>
<th>Alt 4</th>
<th>Alt 5</th>
<th>MOS 1</th>
<th>MOS 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VMT</td>
<td>504,651,236</td>
<td>504,622,466</td>
<td>504,510,630</td>
<td>504,478,371</td>
<td>504,478,074</td>
<td>499,379,904</td>
<td>504,281,492</td>
<td>504,315,228</td>
<td>504,563,698</td>
</tr>
<tr>
<td>VHT</td>
<td>29,204,905</td>
<td>29,182,039</td>
<td>29,150,448</td>
<td>29,176,362</td>
<td>29,167,001</td>
<td>28,920,955</td>
<td>29,150,499</td>
<td>29,177,868</td>
<td>29,147,101</td>
</tr>
<tr>
<td>Average vehicle speed (mph)</td>
<td>17.3</td>
<td>17.3</td>
<td>17.3</td>
<td>17.3</td>
<td>17.3</td>
<td>17.3</td>
<td>17.3</td>
<td>17.3</td>
<td>17.3</td>
</tr>
<tr>
<td>Study Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VMT</td>
<td>5,056,227</td>
<td>5,055,329</td>
<td>5,032,417</td>
<td>5,017,290</td>
<td>5,017,290</td>
<td>5,021,729</td>
<td>5,044,484</td>
<td>5,041,054</td>
<td>5,040,354</td>
</tr>
<tr>
<td>VHT</td>
<td>246,759</td>
<td>246,454</td>
<td>243,846</td>
<td>244,018</td>
<td>242,453</td>
<td>242,773</td>
<td>241,837</td>
<td>245,986</td>
<td>244,920</td>
</tr>
<tr>
<td>Average Speed (mph)</td>
<td>20.5</td>
<td>20.5</td>
<td>20.6</td>
<td>20.6</td>
<td>20.7</td>
<td>20.7</td>
<td>20.7</td>
<td>20.5</td>
<td>20.6</td>
</tr>
<tr>
<td>AM Peak VMT</td>
<td>1,143,472</td>
<td>1,142,863</td>
<td>1,137,069</td>
<td>1,136,954</td>
<td>1,131,944</td>
<td>1,132,786</td>
<td>1,130,979</td>
<td>1,140,207</td>
<td>1,138,340</td>
</tr>
<tr>
<td>AM Peak VHT</td>
<td>64,766</td>
<td>64,646</td>
<td>63,754</td>
<td>63,692</td>
<td>63,055</td>
<td>63,147</td>
<td>62,876</td>
<td>64,459</td>
<td>63,986</td>
</tr>
<tr>
<td>AM Peak Average Speed (mph)</td>
<td>17.7</td>
<td>17.7</td>
<td>17.8</td>
<td>17.9</td>
<td>18.0</td>
<td>17.9</td>
<td>18.0</td>
<td>17.7</td>
<td>17.8</td>
</tr>
<tr>
<td>AM Peak Vehicle Trips</td>
<td>214,110</td>
<td>213,617</td>
<td>212,321</td>
<td>211,885</td>
<td>211,636</td>
<td>211,693</td>
<td>211,336</td>
<td>213,257</td>
<td>212,517</td>
</tr>
<tr>
<td>PM Peak VMT</td>
<td>1,703,535</td>
<td>1,703,247</td>
<td>1,694,792</td>
<td>1,696,797</td>
<td>1,692,156</td>
<td>1,693,159</td>
<td>1,691,390</td>
<td>1,700,564</td>
<td>1,700,050</td>
</tr>
<tr>
<td>PM Peak Average Speed (mph)</td>
<td>15.7</td>
<td>15.7</td>
<td>15.9</td>
<td>15.8</td>
<td>15.9</td>
<td>15.9</td>
<td>15.9</td>
<td>15.7</td>
<td>15.8</td>
</tr>
<tr>
<td>PM Peak Vehicle Trips</td>
<td>260,320</td>
<td>260,045</td>
<td>258,764</td>
<td>258,707</td>
<td>258,300</td>
<td>258,365</td>
<td>257,979</td>
<td>259,697</td>
<td>259,023</td>
</tr>
</tbody>
</table>

Source: Metro Travel Demand Model

VMT = vehicle miles traveled VHT = vehicle hours traveled mph = miles per hour
5.2.2 Study Area Intersections

This section details the development of traffic forecasts for each Project Alternative and analyzes intersection level of service. A travel demand model for the Westside Subway Extension was developed using a combination of the updated Metro regional travel demand model and the VISUM modeling software. The VISUM model provides additional land use and roadway network detail within the project Study Area.

In order to determine the potential changes in Study Area traffic conditions for Project Alternatives, future conditions were first assessed without the Project. This section describes Future Year 2035 No Build turning movement volumes at study intersections; the subsequent section describes intersection LOS. The 192 study intersections assessed for Future Year 2035 No Build conditions were the same as those assessed for Existing Traffic Conditions.

5.2.2.1 Methodology

The Metro Regional Travel Demand Model focuses on estimating regional travel for all of Los Angeles County. The Metro Regional Travel Demand Model receives its demographic inputs from the Southern California Association of Governments (SCAG) Regional Travel Demand Model. The Metro Regional Travel Demand Model produces regional travel flows based on a standard four-step modeling process. Since the proposed project will focus on a localized area along the proposed heavy rail transit alignment alternatives, the regional model would need to be supplemented by a more refined sub-area model for use in this study.

To improve on the level of detail in the forecasting process, the VISUM modeling software was used to extract a sub-area of the regional model and enhance its level of detail. VISUM has the same standard features as traditional travel demand models as well as other features that allow it to capture the local-scale distributional effects of roadway improvements and land use changes more accurately. VISUM is capable of refining regional travel patterns to match observed traffic volumes and can utilize a wide range of sophisticated assignment algorithms to assign trips to the network based on roadway link capacity as well as turning movement capacities. Therefore, the regional model was used as a macro-level planning tool for trip generation, trip distribution, and mode split, while the VISUM model was used for detailed trip assignment in the sub-area.

5.2.2.2 Base Year Model Development

The first step in the forecasting process was to develop a base year AM and PM peak hour VISUM model for the project Study Area. This process involved: (1) data collection, (2) regional model refinement and sub-area extraction, (3) VISUM model development, and (4) VISUM model calibration and validation. Data collection was conducted as part of the existing conditions analysis.

Regional Model Refinement and Sub-Area Extraction

The base year Metro Regional Travel Demand Model was refined by Fehr & Peers to ensure macro-level traffic patterns were reasonable prior to their refinement in VISUM. The roadway network was modified to include all arterial roadways within the project Study Area. Additionally, the roadway network was reviewed to ensure each roadway's facility type, free-flow speed, and number of lanes matched field observations.
A sub-area extraction was then performed on the Metro Regional Travel Demand Model to obtain AM and PM peak hour origin-destination auto trip tables for the project Study Area. This process involved drawing a cordon around the Study Area to capture the destination of trips leaving the Study Area and the origin of trips entering the Study Area. These trips were then aggregated into singular zones, representing points at which vehicles can enter and exit the Study Area. Since the Metro Regional Travel Demand Model produces 3-hour AM and 4-hour PM peak period forecasts, peak period to peak hour factors were developed based on traffic counts collected in the Study Area. The AM and PM peak period sub-area trip tables were factored by 0.38 and 0.30, respectively. The resulting trip tables were the source of peak hour macro-level traffic patterns in the Study Area that were refined in VISUM.

Existing VISUM Model Development

Using aerial photography and field data, a VISUM model was developed for the project Study Area for base year (2009) conditions. The VISUM model was coded with the same attributes typically entered in a regional demand model, such as roadway speeds and capacities, which were based on values coded in the Metro Regional Travel Demand Model and field observation. Detailed characteristics, such as intersection control and turn movement capacities not typically specified in a regional demand model, were also coded in the VISUM model. The additional detail results in a greater understanding of traffic diversion as a result of roadway improvements and land use changes and greater confidence in the resulting forecasts.

Like standard travel demand models, a traffic analysis zone (TAZ) structure was developed for the VISUM model that corresponds to the TAZ system from the Metro Travel Demand Model. TAZs that corresponded to locations where trips enter and exit the network were included along with intermediate “driveway” TAZs that account for traffic originating and terminating in the Study Area. This TAZ system maintains balanced traffic volumes, which are critical in the development of origin-destination trip tables for use in VISUM.

The existing TAZ structure from the Metro Regional Travel Demand Model was then disaggregated in VISUM in order to more accurately forecast traffic volumes for intersection-level analysis. Following the disaggregation of the TAZs, centroid connectors were reconnected at mid-block locations in order to facilitate the flow of traffic onto project Study Area roadways. The existing 112 TAZs in the regional model which represented the project Study Area were disaggregated into a total of 187 TAZs in the VISUM model.

Unlike standard travel demand models, the VISUM model does not include zonal land use data as an input. Instead, the origin-destination trip tables from the refined base year Metro Travel Demand Model were imported into VISUM. Additionally, the existing peak hour traffic volumes were imported into the VISUM model since VISUM has the ability to adjust origin-destination trip tables to match observed volumes by utilizing the relation of link or turning movement traffic volumes and the macro-level traffic patterns from the regional model. The matrix adjustment module (TFlowFuzzy) in VISUM was executed to iteratively adjust the origin-destination trip tables from the regional model to first match the observed intersection approach and departure traffic counts and then again to match the observed intersection turning movement traffic counts.

The TFlowFuzzy process is based on matrix correction research by Zuylen/Willumsen, Bosserhoff, and Rosinowski. The process uses complex vector analysis with the matrix
values used as weights for the origin-destination relations. The matrix correction procedure finds a solution to match the traffic counts. Therefore, it is not necessary that the traffic counts and the origin-destination trip table represent the same year. The end result is a refined origin-destination (AM and PM peak hour) trip table based on the macro-level trip distribution and assignment results from the Metro Regional Demand Model, as well as actual field counts.

Existing VISUM Model Calibration and Validation

The most critical static measurement of the accuracy of any travel model is the degree to which it can approximate actual traffic counts in the base year. For a model to be considered accurate and appropriate for use in traffic forecasting, it must replicate actual conditions to within a certain level of accuracy.

A sub-area validation was performed on the base year VISUM model to ensure the model produces traffic forecasts that reasonably resemble observed traffic counts obtained in the project Study Area in 2009. Traffic forecasting models are typically calibrated by adjusting model parameters until they are validated by applying a set of criteria that compare model volumes to actual counts. In order to more accurately forecast future traffic volumes, the base year VISUM model was calibrated and validated to 1,391 intersection approach and departure link volumes as well as to 1,211 intersection turning movement volumes. Model link volumes were also compared to traffic counts along 22 model validation screenlines, as shown on Figure 5-34.

Caltrans has established guidelines for determining whether a model is valid and acceptable for forecasting future year traffic volumes. The sub-area validation results were compared to the following validation thresholds discussed in *Travel Forecasting Guidelines* (Caltrans 1992):

- The two-way sum of the volumes on all roadway links for which counts are available should be within 10 percent of the counts.
- All of the roadway screenlines should be within the maximum desirable deviation of at least 100 percent.
- At least 75 percent of the roadway links for which counts are available should be within the maximum desirable deviation, which ranges from approximately 15 to 60 percent depending on total volume (the larger the volume, the less deviation is permitted).
- The correlation coefficient between the actual ground counts and the estimated traffic volumes should be greater than 88 percent.
Figure 5-34. Validation Screenlines
Although not stated in the Caltrans standards, an additional Fehr & Peers validation guideline was applied to the sub-area model:

- The percent root mean square (RMSE) should not exceed 40 percent.

The results for AM and PM peak hour conditions are summarized in Table 5-9 and Table 5-10 below, while the detailed spreadsheets are presented in Appendix A.

Table 5-9. Peak Hour VISUM Model Link Volume Validation

<table>
<thead>
<tr>
<th>Validation Statistic</th>
<th>Threshold</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model/count ratio</td>
<td>Within 10%</td>
<td>0.96</td>
<td>0.96</td>
</tr>
<tr>
<td>Percent of screenlines within Caltrans maximum deviation</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Percent of turns within Caltrans maximum deviation</td>
<td>> 75%</td>
<td>92%</td>
<td>92%</td>
</tr>
<tr>
<td>Percent RMSE</td>
<td>< 40%</td>
<td>18%</td>
<td>17%</td>
</tr>
<tr>
<td>Correlation coefficient</td>
<td>> 0.88</td>
<td>0.98</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Source: Fehr & Peers, 2010

As shown in Table 5-9, both the AM and PM peak hour models passed all the validation criteria at the link level. Additionally, a model-to-count ratio of 0.96 indicates the magnitude of trips in the Study Area is appropriate, while validating along all screenlines indicates the directionality of trips in the Study Area is appropriate.

Table 5-10. Peak Hour VISUM Model Turning Movement Validation

<table>
<thead>
<tr>
<th>Validation Statistic</th>
<th>Threshold</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model/count ratio</td>
<td>Within 10%</td>
<td>0.96</td>
<td>0.96</td>
</tr>
<tr>
<td>Percent of turns within Caltrans maximum deviation</td>
<td>> 75%</td>
<td>88%</td>
<td>87%</td>
</tr>
<tr>
<td>Percent RMSE</td>
<td>< 40%</td>
<td>23%</td>
<td>22%</td>
</tr>
<tr>
<td>Correlation coefficient</td>
<td>> 0.88</td>
<td>0.99</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Source: Fehr & Peers, 2010

As shown in Table 5-10, the VISUM model meets or exceeds the guidelines for model accuracy in the AM and PM peak hours at the turning movement level. Therefore, the VISUM model is considered to be valid to 2009 traffic counts and appropriate for use in forecasting Future Year 2035 turning movement volumes.

5.2.2.3 Future Year (2035) VISUM Model Development

The next step in the forecasting process was to develop Future Year 2035 AM and PM peak hour VISUM models for the No Build and each Build Alternative based on the Existing Conditions calibrated/validated VISUM model. Future Year 2035 origin-destination trip tables were first developed for each alternative with the use of the Future Year 2035 Metro Regional Travel Demand Model. This ensured the VISUM models reflected the anticipated growth in the Study Area by year 2035 as estimated by the Metro Regional Travel Demand Model.
Since the Future Year 2035 Metro Regional Travel Demand Model was derived from the base year Metro Travel Demand Model, the same roadway network modifications made to the base year Metro Travel Demand Model were incorporated into the 2035 Metro Travel Demand Model. The Future Year 2035 origin-destination auto trip tables were then assigned to the modified 2035 roadway network to produce 3-hour AM and 4-hour PM peak period forecasts. A summary of the 7-hour peak period Metro Travel Demand Model trip tables for all modes of travel are presented in Table 5-11, which shows the total trips for the No Build Alternative and the difference in trips between the No Build Alternative and each of the Build Alternatives.

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Bus Trips</th>
<th>Rail Trips</th>
<th>Auto Trips</th>
<th>Walk/Bike Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Build</td>
<td>764,483</td>
<td>333,440</td>
<td>35,871,537</td>
<td>3,926,744</td>
</tr>
<tr>
<td>Difference From No Build Scenario</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSM</td>
<td>2,009</td>
<td>-31</td>
<td>-1,399</td>
<td>-569</td>
</tr>
<tr>
<td>Alternative 1</td>
<td>-10,046</td>
<td>23,205</td>
<td>-10,906</td>
<td>-2,248</td>
</tr>
<tr>
<td>Alternative 2</td>
<td>-11,431</td>
<td>26,476</td>
<td>-12,434</td>
<td>-2,610</td>
</tr>
<tr>
<td>Alternative 3</td>
<td>-14,422</td>
<td>33,412</td>
<td>-16,025</td>
<td>-2,957</td>
</tr>
<tr>
<td>Alternative 4</td>
<td>-12,865</td>
<td>29,565</td>
<td>-13,520</td>
<td>-3,174</td>
</tr>
<tr>
<td>Alternative 5</td>
<td>-16,254</td>
<td>37,674</td>
<td>-17,815</td>
<td>-3,596</td>
</tr>
<tr>
<td>MOS 1</td>
<td>-2,836</td>
<td>6,710</td>
<td>-3,080</td>
<td>-787</td>
</tr>
<tr>
<td>MOS 2</td>
<td>-7,443</td>
<td>17,376</td>
<td>-8,001</td>
<td>-1,928</td>
</tr>
</tbody>
</table>

Source: Fehr & Peers, 2010

As shown in Table 5-11, the Build Alternatives reduce the number of auto, bus, and walk/bike trips in the Future Year 2035 Metro Regional Travel Demand Model while the total number of trips remain relatively unchanged, indicating a shift in mode of travel rather than an overall change in the total number of trips. Under the TSM Alternative, a relatively small number of auto trips would be reduced from the No Build as compared to any Build Alternatives. Additionally, approximately 45% of new rail trips with the Build Alternatives are shifted from the existing bus system to the expanded rail system. The rest of the rail trips would shift from auto and a small amount from walk and bike.

A sub-area extraction was then performed on the Future Year 2035 Metro Regional Travel Demand Model to obtain AM and PM peak hour origin-destination auto trip tables for the project Study Area. This process involved using the same cordon used in the base year model development to capture the destination of trips leaving the model and the origin of trips entering the model. Since the Future Year 2035 Metro Regional Travel Demand Model also produces 3-hour AM and 4-hour PM peak period forecasts, the same peak period to peak hour factors developed for the base year were used. The AM and PM peak period sub-area trip tables were factored by 0.38 and 0.30, respectively.

The resulting trip tables were compared to the trip tables from the base year Metro Regional Travel Demand Model to ensure a reasonable growth (or decline) in traffic between individual origin-destination pairs. If an unrealistic growth or decline was observed between an origin and destination, the flow between the origin-destination pair was adjusted. A summary of the AM and PM peak hour Study Area auto trip tables are presented in
Table 5-12 and Table 5-13, respectively, which show the total trips for the No Build Alternative and the difference in trips between the No Build Alternative and each of the Build Alternatives.

Table 5-12. Year 2035 AM Peak Hour Study Area Auto Trips by Type

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Internal Trips</th>
<th>One Trip End in the Study Area</th>
<th>Cut-Through Trips</th>
<th>Total Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Build</td>
<td>5,363</td>
<td>14,557</td>
<td>17,796</td>
<td>37,717</td>
</tr>
<tr>
<td>Difference From No Build Scenario</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSM</td>
<td>-13</td>
<td>-480</td>
<td>310</td>
<td>-183</td>
</tr>
<tr>
<td>Alternative 1</td>
<td>-226</td>
<td>-1,563</td>
<td>224</td>
<td>-1,565</td>
</tr>
<tr>
<td>Alternative 2</td>
<td>-449</td>
<td>-1,776</td>
<td>251</td>
<td>-1,973</td>
</tr>
<tr>
<td>Alternative 3</td>
<td>-400</td>
<td>-2,074</td>
<td>195</td>
<td>-2,279</td>
</tr>
<tr>
<td>Alternative 4</td>
<td>-473</td>
<td>-1,944</td>
<td>340</td>
<td>-2,077</td>
</tr>
<tr>
<td>Alternative 5</td>
<td>-618</td>
<td>-2,155</td>
<td>374</td>
<td>-2,400</td>
</tr>
<tr>
<td>MOS 1</td>
<td>-92</td>
<td>-761</td>
<td>186</td>
<td>-667</td>
</tr>
<tr>
<td>MOS 2</td>
<td>-213</td>
<td>-1,379</td>
<td>419</td>
<td>-1,173</td>
</tr>
</tbody>
</table>

Source: Fehr & Peers, 2010

Table 5-13. Year 2035 PM Peak Hour Study Area Auto Trips by Type

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Internal Trips</th>
<th>One Trip End in the Study Area</th>
<th>Cut-Through Trips</th>
<th>Total Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Build</td>
<td>7,967</td>
<td>13,771</td>
<td>20,928</td>
<td>42,666</td>
</tr>
<tr>
<td>Difference From No Build Scenario</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSM</td>
<td>235</td>
<td>-509</td>
<td>626</td>
<td>352</td>
</tr>
<tr>
<td>Alternative 1</td>
<td>-124</td>
<td>-1,432</td>
<td>517</td>
<td>-1,039</td>
</tr>
<tr>
<td>Alternative 2</td>
<td>-97</td>
<td>-1,515</td>
<td>513</td>
<td>-1,100</td>
</tr>
<tr>
<td>Alternative 3</td>
<td>-206</td>
<td>-1,814</td>
<td>442</td>
<td>-1,577</td>
</tr>
<tr>
<td>Alternative 4</td>
<td>-231</td>
<td>-1,723</td>
<td>562</td>
<td>-1,393</td>
</tr>
<tr>
<td>Alternative 5</td>
<td>-418</td>
<td>-1,922</td>
<td>440</td>
<td>-1,901</td>
</tr>
<tr>
<td>MOS 1</td>
<td>152</td>
<td>-775</td>
<td>348</td>
<td>-275</td>
</tr>
<tr>
<td>MOS 2</td>
<td>-209</td>
<td>-1,088</td>
<td>485</td>
<td>-812</td>
</tr>
</tbody>
</table>

Source: Fehr & Peers, 2010

As shown in Table 5-12 and Table 5-13, the Build Alternatives reduce the total number of auto trips in the Future Year 2035 Metro Regional Travel Demand Model, with a majority of the decrease coming from trips with one trip end in the Study Area. Cut-through trips account for approximately 50% of the growth in vehicle trips between the base year and the Future Year 2035 No Build Alternative, and cut-through trips also increase under all Build Alternatives in the AM and PM peak hours. Auto trips with their origin and destination in the Study Area (internal trips) generally decrease under the Build Alternatives.

The Future Year 2035 AM and PM peak hour origin-destination trip tables for the VISUM models were then developed by adding the difference between the base and future year trip tables from the Metro Regional Travel Demand Model to the refined existing origin-destination trip tables were developed during the VISUM calibration/validation process.
The approach described above is consistent with other model adjustment techniques like the “difference method,” which applies the following formula:

\[
\text{Adjusted Future Volume} = \text{Field Count} + (\text{Model Future Volume} - \text{Model Base Volume})
\]

However, instead of applying the adjustment at the link or turning movement level, the adjustment is applied at the origin-destination level to better reflect the model’s growth predictions.

The Existing calibrated/validated VISUM model was then modified to include the northbound HOV lane on I-405 assumed in the Future Year 2035 Metro Regional Travel Demand Model. No other future roadway improvements were included in the Future Year 2035 Metro Regional Travel Demand Model in the Study Area. The final Future Year 2035 origin-destination trip tables were then assigned for the No Build and each of the Build Alternatives and the resulting link volumes for the No Build Alternative were compared to base year link volumes to ensure the growth was reasonable. The resulting link volumes for the Build Alternatives were compared to link volumes for the No Build Alternative to ensure the growth (or decline) was reasonable. Subsequently, the turning movement volumes for the No Build and Build Alternatives were adjusted through the use of the “difference method” to account for Existing VISUM model deviation from observed traffic counts.

The AM and PM peak hour vehicle-miles traveled (VMT) results from the 2035 VISUM model are shown in Table 5-14, which show the AM and PM peak hour VMT for the No Build Alternative and each Build Alternative, and the difference in VMT between the No Build Alternative and each of the Build Alternatives. This difference is shown in Figure 5-35.

Table 5-14 shows that VMT generally decreases from the No Build Alternative to each of the Build Alternatives. Additionally, VMT generally decreases from the No Build Alternative to each of the Build Alternatives. Increases in VMT reported for several of the Build Alternatives during the PM peak hour are due to the additional cut-through trips traveling through the Study Area as projected by the Metro Regional Travel Demand Model.

Table 5-14. Year 2035 AM and PM Peak Hour Vehicle-Miles Traveled

<table>
<thead>
<tr>
<th>Alternative</th>
<th>AM Peak Hour VMT</th>
<th>AM Peak Hour VMT Delta</th>
<th>PM Peak Hour VMT</th>
<th>PM Peak Hour VMT Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Build</td>
<td>350,090</td>
<td>—</td>
<td>380,492</td>
<td>—</td>
</tr>
<tr>
<td>TSM</td>
<td>349,625</td>
<td>-465</td>
<td>382,125</td>
<td>1,633</td>
</tr>
<tr>
<td>Alternative 1</td>
<td>346,001</td>
<td>-4,089</td>
<td>378,721</td>
<td>-1,771</td>
</tr>
<tr>
<td>Alternative 2</td>
<td>344,839</td>
<td>-5,251</td>
<td>378,725</td>
<td>-1,768</td>
</tr>
<tr>
<td>Alternative 3</td>
<td>344,020</td>
<td>-6,070</td>
<td>376,857</td>
<td>-3,635</td>
</tr>
<tr>
<td>Alternative 4</td>
<td>344,973</td>
<td>-5,117</td>
<td>378,040</td>
<td>-2,453</td>
</tr>
<tr>
<td>Alternative 5</td>
<td>343,283</td>
<td>-6,806</td>
<td>376,211</td>
<td>-4,281</td>
</tr>
<tr>
<td>MOS 1</td>
<td>348,841</td>
<td>-1,249</td>
<td>381,089</td>
<td>597</td>
</tr>
<tr>
<td>MOS 2</td>
<td>346,369</td>
<td>-3,720</td>
<td>379,355</td>
<td>-1,138</td>
</tr>
</tbody>
</table>

Source: Fehr & Peers, 2010. Values shown do not include cut-through trips that do not have an origin or destination within the Study Area.
5.2.2.4 **Synchro Analysis**

The Synchro 6.0 software suite was used to develop the Study Area roadway and intersection network for the previously completed Existing Conditions traffic analysis. The model network developed for the Existing Conditions traffic analysis was also used for the future year 2035 No Build scenario. The Synchro model network was constructed by drawing the roadway network using aerial photography as a background. The number of lanes and the location of lane additions and drops were confirmed by field observations. Additional detail was incorporated into the Synchro model network (posted speed limits, grades, etc.) to better reflect observed field conditions. Traffic signal-related information such as phasing and initial timings (minimum green, maximum green, distance or “gap” between vehicles, etc.) for the signalized intersections was obtained from the local agencies or during field visits to the site. Additional detail, such as turn pocket lengths, saturation flow and intersection spacing was coded based on field measurements. Once the model network was developed, Future Year 2035 No Build AM and PM peak hour intersection turning movement counts and pedestrian volumes were input into the model and the delay and delay-based level of service (LOS) calculations were completed for each Study Area intersection included in the model network.

5.2.2.5 **Incorporation of Pedestrian Volumes**

Future 2035 No Build Scenario

Existing pedestrian data collected at study intersections adjacent to potential station locations were added to the Synchro network to establish a future base for pedestrian volumes under the Future Year 2035 No Build scenario. These volumes were added to the Synchro network to account for additional vehicle delay at unprotected left and right turns as a result of pedestrian activity.
Future Build Alternatives

The project would result in additional pedestrian activity at intersections immediately adjacent to and within walking distance (typically one-quarter mile) of proposed station locations. Mode of access data from the Metro Regional Travel Demand Model along with future station site plans (locations of pedestrian ingress and egress) were used to determine the increase in pedestrians expected at each leg of an intersection adjacent to a proposed station entrance location. The pedestrian volumes were added to the Synchro network to account for additional vehicle delay at unprotected left and right turns as a result of increased pedestrian activity. Vehicle delay would also be affected by an increased number of pedestrian calls, which would increase time allotted to walk phases and associated red/yield phases for vehicles.

5.2.2.6 Incorporation of Heavy Vehicles

The Metro Regional Travel Demand Model did not include heavy vehicle trips (such as delivery trucks and tractor-trailers) as a part of the highway assignment. In the Existing Traffic Conditions analysis, these trips were accounted for because level of service analysis was calculated based on turning movement counts that were recorded at each of the study intersections, which included heavy vehicle trips. Therefore, to account for the assignment of heavy vehicle trips that was not included the Metro Regional Travel Demand Model, 2% of the incremental increase in volumes between Existing Conditions and Future Year 2035 No Build was applied to the Future Year 2035 No Build and all Build Alternative scenarios.

5.2.2.7 Incorporation of Transit Services

The Metro Regional Travel Demand Model did not include transit trips (such as buses) as a part of the highway assignment. In the Existing Traffic Conditions analysis, these trips were accounted for because level of service analysis was calculated based on turning movement counts that were recorded at each of the study intersections, which included transit (bus) trips. Therefore, to account for increased (or decreased) transit activity compared to the Existing Traffic Conditions scenario, the 2035 No Build transit network (including routes and headways) was reviewed and the net increase or decrease in trips were added to the through traffic at the affected intersections in the Future Year 2035 No Build and all Build Alternative scenarios.

5.2.2.8 No Build Traffic Forecasts and Level of Service Analysis

Traffic Forecasts

The weekday peak hour (AM and PM) Future Year 2035 No Build traffic forecasts projected at the 192 study intersections are shown in Appendix A.

Level of Service Analysis

Fifty-three of the 192 analyzed intersections (28 percent) are operating at an acceptable LOS D or better in the morning and afternoon peak hours. The remaining 139 intersections (72 percent) operate at LOS E or F (deficient LOS) during one or both analyzed peak hours. By 2035, the majority of study intersections will operate under congested conditions (LOS E or F) during peak hours without the Project.

1 In the absence of local classification data, 2% heavy vehicle trips is the default value in Exhibit 10-12 of the 2000 Highway Capacity Manual (Transportation Research Board, 2000)
The model predicts that the majority of analyzed intersections along Wilshire and Santa Monica Boulevards will operate under deficient LOS in the future, resulting in significant delay for motorists traveling along east-west and north-south corridors in the Westside. These LOS results by peak hour are illustrated graphically in Figure 5-36.

Projected morning and afternoon peak period delay and corresponding LOS at each study intersection are contained in Appendix B-2.

Detailed LOS calculations are provided in Appendix C-2.

5.2.2.9 TSM Traffic Forecasts and Level of Service Analysis

Traffic Forecasts

The only improvement assumed under the TSM Alternative is increased bus service along Wilshire Boulevard. The weekday AM and PM peak hour Future Year 2035 TSM traffic forecasts indicate a net decrease of 183 total trips in the AM peak hour and a net increase of 352 total trips in the PM peak hour within the entire Study Area as compared with the Future No Build Scenario. This represents less than 1/10 of a percent difference in traffic volumes between the TSM and No Build Alternatives. The minimal change is the result of a nearly identical roadway and transit network (land use does not change). The effect of the TSM Alternative at individual study intersections would be nominal and the difference from the No Build Alternative is not statistically significant. Therefore, for the traffic operations LOS analysis, the TSM alternative is considered to be identical to the No Build Alternative.

Level of Service Analysis

No changes in level of service between the Future Year 2035 No Build Scenario and TSM Alternative are expected as a result of only a minor improvement to the transit service along Wilshire Boulevard. Level of service has been depicted in Figure 5-36.

Therefore, the same fifty-three of the 192 analyzed intersections (28 percent) would operate at an acceptable LOS D or better in the morning and afternoon peak hours. The remaining 139 intersections (72 percent) would operate at LOS E or F (deficient LOS) during one or both analyzed peak hours.
Figure 5-36. Future Year 2035 No Build/TSM Intersection Levels of Service
Figure 5-36. Future Year 2035 No Build/TSM Intersection Levels of Service (continued)
Figure 5-36. Future Year 2035 No Build/TSM Intersection Levels of Service (continued)
Figure 5-36. Future Year 2035 No Build/TSM Intersection Levels of Service (continued)
Figure 5-36. Future Year 2035 No Build/TSM Intersection Levels of Service (continued)
5.2.2.10 Future Build Alternative Traffic Forecasts and Level of Service Analysis

For the five Build Alternatives, study intersections within one mile of potential station locations were analyzed, as it was reasonable to assume that vehicular and pedestrian traffic at study intersections farther than one mile from a station location would be nominally affected by the project. The level of service at intersections farther than one mile will remain the same as the Future Year 2035 No Build and TSM Alternatives. Under Alternative 5, all 192 intersections were analyzed as this alternative assumed full build out of the Westside Subway Extension. The following provides a description of the modified Study Area for each analyzed project alternative:

- **Alternative 1 (111 study intersections)**
 - Intersections south of Melrose Avenue
 - Intersections east of and including Sawtelle Avenue
- **MOS 1 (47 study intersections)**
 - Intersections south of Melrose Avenue
 - Intersections east of and including La Cienega Boulevard
- **MOS 2 (83 study intersections)**
 - Intersections south of Melrose Avenue
 - Intersections east of and including Beverly Glen Boulevard
- **Alternative 2 (126 study intersections)**
 - Intersections south of Melrose Avenue
 - Intersections east of and including Bundy Drive
- **Alternative 3 (156 study intersections)**
 - Intersections south of Melrose Avenue
- **Alternative 4 (162 study intersections)**
 - Intersections east of and including Bundy Drive
- **Alternative 5 (192 study intersections)**

Study intersection turning movement volumes are contained in Appendix A. Intersections not applicable to the project scenario show “NA” in place of turning movement volumes. Projected morning and afternoon peak period delay and corresponding LOS at each study intersection for the seven Build Alternatives are contained in Appendices B-3 to B-7. By 2035, the majority of study intersections will operate under congested conditions (LOS F) during peak hours both with and without the Project. Detailed LOS calculations per intersection by scenario are provided in Appendices C-3 to C-7.

Consideration of Parking Spillover in Traffic Forecasts

The parking impact assessment for the Westside Subway Extension considered the potential for parking spillover to occur in the residential neighborhoods surrounding potential station locations. Spillover potential was assessed because some riders of the Westside Subway Extension may still drive to stations to access the subway, despite park-and-ride facilities not being provided. Without park-and-ride, parking demand would be reduced, as more riders...
are picked-up/dropped-off, walk, bike, or take bus transit to access the subway; but, some riders with access to automobiles might still locate available unrestricted parking on neighborhood streets within a one half mile walking distance of stations. The parking impact assessment disclosed impacts related to spillover and recommended feasible mitigation measures, including the creation of residential permit parking districts, to prevent spillover and reduce those impacts to below significant levels. With parking mitigation measures in place, project-related peak hour traffic entering residential neighborhoods would be nominal and no impacts would be expected to occur.

5.2.2.11 **Alternative 1 + MOS 1, MOS 2**

Traffic Forecasts

Using the inputs described previously, the weekday peak hour (AM and PM) year 2035 traffic forecasts for Alternative 1, MOS 1, and MOS 2 were developed at Study Area intersections.

Level of Service Analysis

Alternative 1

Twenty two of the 111 analyzed intersections (20 percent) would operate at an acceptable LOS D or better in the morning and afternoon peak hours. The remaining 89 intersections (80 percent) would operate at LOS E or F (deficient LOS) during one or both analyzed peak hours. The LOS results by peak hour are illustrated graphically in Figure 5-37. For any intersections that were not studied under this alternative, the Future Year 2035 No Build level of service is shown.

Alternative 1 would result in a measurable improvement in traffic operating conditions compared to the Future Year 2035 No Build Scenario. In the AM peak hour, 10 intersections would improve by one level of service and in the PM peak hour, seven intersections would improve by one level of service. Table 5-15 summarizes the improvement in level of service during each peak hour by alternative.

MOS 1

Nine of the 47 analyzed intersections (19 percent) would operate at an acceptable LOS D or better in the morning and afternoon peak hours. The remaining 38 intersections (81 percent) would operate at LOS E or F (deficient LOS) during one or both analyzed peak hours. The LOS results by peak hour are illustrated graphically in Figure 5-38. For any intersections that were not studied under this alternative, the Future Year 2035 No Build level of service is shown.

MOS 1 would result in a modest, but measurable improvement in traffic operating conditions compared to the Future Year 2035 No Build Scenario. In the AM peak hour, six intersections would improve by one level of service and in the PM peak hour, three intersections would improve by one level of service. Table 5-15 summarizes the improvement of level of service in each peak hour by alternative.

MOS 2

Nineteen of the 83 analyzed intersections (23 percent) would operate at an acceptable LOS D or better in the morning and afternoon peak hours. The remaining 64 intersections (77 percent) operate at LOS E or F (deficient LOS) during one or both analyzed peak hours. The LOS results by peak hour are illustrated graphically in Figure 5-39. For any intersections that
were not studied under this alternative, the Future Year 2035 No Build level of service is shown.

MOS 2 would result in a modest, but measurable improvement in traffic operating conditions compared to the Future Year 2035 No Build Scenario. In the AM peak hour, 10 intersections would improve by one level of service and in the PM peak hour, seven intersections would improve by one level of service. Table 5-15 summarizes the improvement of level of service in each peak hour by alternative.

Table 5-15. Level of Service Improvement Compared with Future Year 2035 No Build Scenario

<table>
<thead>
<tr>
<th>Level of Service Improvement</th>
<th>Alternative 1</th>
<th>MOS 1</th>
<th>MOS 2</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
<th>Alternative 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AM Peak Hour</td>
<td>PM Peak Hour</td>
<td>AM Peak Hour</td>
<td>PM Peak Hour</td>
<td>AM Peak Hour</td>
<td>PM Peak Hour</td>
<td>AM Peak Hour</td>
</tr>
<tr>
<td>F to E</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>E to D</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D to C</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>C to B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B to A</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>12</td>
</tr>
</tbody>
</table>