EXECUTIVE SUMMARY

PROJECT PURPOSE

In March 2016, the Metro Board of Directors directed Metro to conduct a study to reassess the previously environmentally cleared light rail transit project in the Los Angeles-Glendale-Burbank corridor (1992), identify rail connectivity through different rail technologies for the corridor, and form a working group consisting of key stakeholder cities. Per the Board motion up to two additional stations in the City of Glendale and up to two additional stations in the City of Los Angeles were to be evaluated, as well as the provision of increased train service throughout the day from Union Station to the City of Burbank. The purpose of this project is to assess the feasibility of providing more frequent and consistent level of service throughout the day along the Corridor to improve passenger mobility and transit access across the region. This project will also study the performance, benefits, and opportunities of different transit modes to identify the best mode that would meet the needs and enhance the service of the Corridor, as shown in Figure ES-1.

BACKGROUND

Between 1988 and 1994 the Los Angeles County Transportation Commission (predecessor agency to Metro) undertook studies and ultimately certified the Environmental Impact Report (EIR) for a 13-mile Light Rail Transit Project that was planned to operate between Union Station and the Hollywood Burbank Airport. Today, the Los Angeles-Glendale-Burbank corridor is heavily utilized by passenger and freight rail services between Los Angeles Union Station (LAUS) and Burbank Airport North Station along the Metro-owned Valley Subdivision. Passenger rail services operated along the corridor include the Metrolink Antelope Valley Line (AVL), the Metrolink Ventura County Line (VCL), the Amtrak Pacific Surfliner and Coast Starlight, and the Metro Gold Line. The Union Pacific Railroad (UPRR) operates freight service within the corridor. Approximately 85 Metrolink, Amtrak and UPRR trains traverse the corridor per weekday. Ridership is approximately 7,000 per weekday on the AVL, 4,000 per weekday on the VCL, plus...
2,000 per weekday on Amtrak. The corridor is double tracked from LAUS to just before the Metrolink Burbank Airport North Station.

Feasibility Study Objectives

In June 2018, Metro staff engaged a consultant, Mott MacDonald, to conduct the Los Angeles – Glendale – Burbank Feasibility Study (LGBFS). The four primary objectives of the LGBFS was to:

1. Assess potential locations for additional rail stations;
2. Evaluate rail service in the corridor provided by the following technologies:
 a. Locomotive Hauled Coach (LHC);
 b. Rail Multiple Unit (RMU); or
 c. Light Rail Transit (LRT); and
3. Evaluate increases to passenger rail service.

The LGBFS also analyzes parking demand along the corridor, identifies infrastructure improvements, capital costs, and operations and maintenance costs to support the study scenarios, and analyzes funding opportunities.

In July 2017, Metro staff was also directed to conduct the Metrolink Antelope Valley Line Study, which assesses capital improvements and operational feasibility on the AVL from the City of Burbank to its terminus in the City of Lancaster. Both studies were developed in concurrence with one another to maintain consistency in operating scenarios, capital improvements, and costs.

Assess Potential Locations for Additional Rail Stations

The station location evaluation examined the entire corridor from LAUS to Burbank Airport North Station in order to identify up to two suitable station sites in both the City of Los Angeles and City of Glendale. A new station was discussed with the City of Burbank, but as they have three existing Metrolink Station no additional stations were requested. Factors considered to select the additional sites included existing bus ridership, housing, employment, access to site, operations integration, potential for parking, travel times, service headways and stakeholder and public input.

Identified potential station locations were discussed with the Corridor Cities Working Group (CCWG) and through a public outreach survey which received over 2,500 responses. The CCWG comprises key stakeholders including City of Los Angeles, City of Glendale, City of Burbank, elected officials’ staff, Metrolink staff and Metro staff. CCWG meetings confirmed with the key stakeholders that the frontrunners, River Park for Los Angeles, and Grandview/Sonora for Glendale, would be examined with further analysis for this and future studies.
EVALUATE RAIL SERVICE IN THE CORRIDOR PROVIDED BY METROLINK, RMU, AND LRT TECHNOLOGIES

The LGBFS evaluated the three transit modes and potential alignments in order to determine which modes are the most feasible for increased service provision in the Corridor. The three transit modes are:

1. Locomotive Hauled Coach – Currently operated on the Metrolink system

2. Rail Multiple Unit (diesel/electric/other) – Planned operations in the San Bernardino County (Arrow); currently operated in San Diego County (Sprinter) and Sonoma-Marin Counties (SMART)

3. Light Rail Transit – Currently operated on the Metro system

Locomotive Hauled Coach – Currently Metrolink operates 64 locomotive hauled coaches each weekday through the corridor along the trunk line of the Ventura County and Antelope Valley Lines. They can operate in shared freight corridors with stations every two to five miles apart. A Tier 4 locomotive is the latest model currently operated on the Metrolink system and is the cleanest diesel locomotive in the nation. Tier 4 locomotives are compliant with the latest Environmental Protection Agency (EPA) emissions standards and reduce emissions by up to 85 percent when compared with Tier 0 locomotives. Metrolink will eventually replace 40 of its existing 56 locomotives with new Tier 4 locomotives. Metrolink locomotives (shown in Figure ES-2) are also equipped with Positive Train Control, which is required by the Federal Railroad Administration in order to operate in shared freight corridors.

Rail Multiple Unit – RMU trains can either be propelled by electricity, diesel or hydrogen. RMUs are lighter vehicles which act as a hybrid between LHC and LRT vehicles and can operate in shared freight corridors. Battery technology is currently advancing and other low or zero emissions technologies are being explored with these types of transit vehicles. The following are some key considerations for RMUs:

- RMUs have the ability to accelerate and decelerate at faster speeds due to their light weight, resulting in fast travel times.

- RMUs have similar light maintenance requirements as LHC (e.g. Metrolink or Amtrak), but have differing heavy maintenance requirements. Unlike an LHC, an RMU cannot be easily decoupled for heavy maintenance so synchronized lifting is required. The construction of a new maintenance and service facility may be necessary if a new fleet of RMUs were procured as the existing Metrolink facilities are at or near capacity.
The passenger-platform interface and maintaining freight traffic at existing Metrolink station along the corridor will be a key consideration to utilizing RMUs. Since Metrolink and RMU vehicles have different platform levels (8" platforms for Metrolink and 24" platforms for RMUs) design modification to the vehicles or the station platforms are required to utilize existing stations.

Lightweight rail vehicles, like RMUs occasionally fail to shunt track circuits, resulting in loss of train detection. Loss-of-shunt is associated with light axle loading, infrequent traffic, wheel tread building-up, and other conditions which raise wheel-rail contact resistance. These shunting issues can be mitigated by implementing modifications to existing train control system and would need to be explored further prior to implementation.

There are currently no agencies that operate RMUs in the Metrolink system, which spans six counties. San Bernardino County is currently planning a future Diesel Multiple Unit and Zero Emission Multiple Unit service in the near future (see Figure ES-3) which could potentially share ROW with Metrolink along the San Bernardino Line. If RMUs were pursued along the AVL corridor, Metro may consider being the operator of the service, keeping in mind considerations for labor requirements and fare structures; however, this type of service would align more closely with the long-distance commuter style of rail service that SCRRA currently provides.

Light Rail Transit – LRT systems utilize overhead electrically powered vehicles (see Figure ES-4) which can travel between suburbs or within urban centers. These vehicles cannot operate on freight railroad tracks unless approved by regulatory bodies. Although shared use arrangements involving LRT on mainline railway tracks are common throughout Europe, they would likely not be agreed to in the United States, primarily due to regulatory differences but also because freight railroads are much more conservative about allowing other operations on shared right-of-way. For these reasons, the LRT alternative has been approached in this analysis as operating on a dedicated rail corridor which is parallel to the existing corridor, keeping in mind the various
junction and terminus options that are feasible in the area.

EVALUATE INCREASES TO PASSENGER RAIL SERVICE

To evaluate increases to passenger rail service utilizing Metrolink technology, the LGBFS developed different study scenarios for each mode for the purposes of developing ridership forecasts, cost estimates, and operating schedules on the AVL.

The Metrolink/LHC scenarios included:
- M Option 1: Add one evening round trip
- M Option 2: Add two new stations
- M Option 60M: 60-minute bi-directional service
- M Option 30M: 30-minute bi-directional service
- M Option 15M: 15-minute bi-directional service

The RMU scenario includes:
- RMU Option: Blended Metrolink + RMU service to Via Princessa, and Metrolink service to Lancaster

The LRT scenarios include:
- LRT Option 1: LRT Service – Metrolink Corridor
- LRT Option 2: LRT Service – Downtown Glendale and Downtown Burbank

STUDY FINDINGS

The study scenarios were evaluated based on the quantitative and qualitative criteria as shown in Figure ES-5.
Figure ES-5: Study Criteria

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit Access and Regional Connectivity</td>
<td>Does the scenario provide better access to transit and the region’s transportation systems?</td>
</tr>
<tr>
<td>Ridership Demand Forecasts</td>
<td>Is the scenario attractive enough to enhance ridership under conditions in 2028 and 2042?</td>
</tr>
<tr>
<td>Stakeholder Preferences</td>
<td>Consider feedback obtained from April 2019 survey and stakeholder meetings held throughout the Study</td>
</tr>
<tr>
<td>Right-of-Way Impacts</td>
<td>Does the scenario require significant amount of ROW?</td>
</tr>
<tr>
<td>Environmental Impacts</td>
<td>What are the potential environmental impacts from the scenarios?</td>
</tr>
<tr>
<td>Parking Demand at Existing Stations</td>
<td>Does 2042 parking demand greatly exceed the capacity at existing Metrolink station park-and-ride lots?</td>
</tr>
<tr>
<td>Travel Time & Headways</td>
<td>How do the scenarios compare against each other in travel times and frequencies?</td>
</tr>
<tr>
<td>Integration of Operations</td>
<td>Does the scenario limit or preclude future rail service expansion (freight and/or passenger rail)?</td>
</tr>
<tr>
<td>Capital & Operating Costs</td>
<td>What are the potential capital and operating costs?</td>
</tr>
</tbody>
</table>

A summary of the analysis is shown in Figure ES-6.
Figure ES-6: Options Evaluation Summary

<table>
<thead>
<tr>
<th>Scenario</th>
<th>AVERAGE FREQUENCIES</th>
<th>WEKEADAY ROUND TRIPS</th>
<th>ADDITIONAL IMPROVEMENTS</th>
<th>TOTAL CAPITAL COSTS</th>
<th>ANNUAL O&M COSTS</th>
<th>AVERAGE WEEKDAY BOARDINGS 2028 / 2048</th>
<th>EVALUATION RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Antelope Valley Line</td>
<td>15 Antelope Valley Line</td>
<td>None</td>
<td>None</td>
<td>$35M</td>
<td>16,500 / 36,000</td>
<td>Score 13: Improvement on service for low costs</td>
</tr>
<tr>
<td></td>
<td>Ventura County Line</td>
<td>16 Ventura County Line</td>
<td>New River Park station</td>
<td>$76M</td>
<td>$35M</td>
<td>16,500 / 36,400</td>
<td>Score 13: Improvement on service for low costs</td>
</tr>
</tbody>
</table>
| | Amtrak | 6 Amtrak | New Grandview/ Sonora station | $42M | $39M | 16,600 / 36,700 | Score 12: Increased access to Metrolink |}

Scenario 13:
- Improved service for low costs
- Service still infrequent

Score 13:
- Improved service for low costs
- Service still infrequent

Score 21:
- Improved off-peak direction service
- Passengers would need to walk up to 1 hour for trains on the AVL

Score 24:
- Significantly more round trips and better frequency
- High capital and operations costs

Score 25:
- Highest level of Metrolink service
- Requires significant infrastructure and funding

Score 26:
- High-quality headways with lower operational costs
- Less robust service north of Via Princessa due to shorter trip service on RMUs

Score 17:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 18:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 19:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 20:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 21:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 22:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 23:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 24:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 25:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 26:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 27:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 28:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 29:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 30:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 31:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 32:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 33:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 34:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 35:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 36:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 37:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 38:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 39:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 40:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 41:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 42:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 43:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 44:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 45:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 46:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 47:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 48:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 49:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 50:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 51:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 52:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 53:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 54:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 55:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 56:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 57:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 58:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 59:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 60:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 61:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 62:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 63:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 64:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 65:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 66:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 67:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 68:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 69:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 70:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 71:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 72:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 73:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 74:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 75:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 76:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 77:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 78:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 79:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 80:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 81:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 82:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 83:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 84:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 85:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 86:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 87:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 88:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 89:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 90:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 91:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 92:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 93:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 94:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 95:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 96:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 97:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 98:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 99:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor

Score 100:
- Provides new frequent service near trip generators and jobs
- Impacts on local communities and corridor
As a result of the evaluation, M Option 30 was identified as the most optimal mode option for the corridor and can be implemented in incremental phases, with substantial service improvements for relatively lesser capital costs, as shown in Figure ES-7.

Figure ES-7: Study Scenario Ridership Demand Forecasts and Capital Cost Estimates

Average AVL Weekday Boarding Forecasts (2028 and 2042) and Total Capital Costs

- $0 (2019)
- $0 (2028)
- $42M (2042)
- $175M (2028)
- $760M (2042)
- $849M (2042)
- $4.2B (2042)
- $6.0B (2042)
Table ES-7 shows the scenario scoring results with a score of low (1), medium (2), or high (3) in each category.

<table>
<thead>
<tr>
<th>Category</th>
<th>M 1</th>
<th>M 2</th>
<th>M 60</th>
<th>M 30</th>
<th>M 15</th>
<th>RMU</th>
<th>L 1</th>
<th>L 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit Accessibility</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Ridership Capacity</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Community Stakeholder Preferences</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ROW Requirements</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Environmental Constraints</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Parking Considerations</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Travel Time & Headways</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Integration of Operations</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cost Estimates (2018 $)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>17</td>
<td>21</td>
<td>24</td>
<td>22</td>
<td>20</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

With limited capital and operational funding currently available a phased approach should be explored that would build on M Option 1 and M Option 60, finally resulting in the implementation of M Option 30 on the AVL. This phased approach is summarized in Table ES-8.
Table ES-8: Incremental Approach to Achieving M Option 30

<table>
<thead>
<tr>
<th>Year</th>
<th>Incremental Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>Add one evening round trip on the AVL (M Option 1)</td>
</tr>
<tr>
<td>2022</td>
<td>Add one midway round trip on the AVL</td>
</tr>
<tr>
<td>2030</td>
<td>Achieve 30-minute headways between LAUS and Burbank Downtown Station with both AVL and VCL service (M Option 60)</td>
</tr>
<tr>
<td>2040</td>
<td>Achieve 30-minute bi-directional service on the AVL (resulting in less than 30-minute headways between LAUS and Burbank Downtown Station with combined AVL and VCL service) (M Option 30)</td>
</tr>
</tbody>
</table>

The schedule shown in Table ES-8 depicts the worst-case scenario for the years of implementation. The incremental improvements shown above would be subject to demand, infrastructure, and funding availability, and could be implemented on an accelerated schedule as these become available.

Implementation of New Metrolink Stations – New Metrolink stations along the corridor could support increased access to job centers in Glendale and Los Angeles. This would be contingent upon further study, community feedback, and funding. If one or two stations were to be constructed on the line, adding more express service for the peak-direction should be explored to continue serving long distance commuters from north of Santa Clarita.

Potential for Rail Multiple Unit Implementation – While implementing a large-scale RMU system in the short term in the study area may not be feasible due to high capital costs, RMUs could be explored to operate as limited and off-peak service to supplement existing AVL service to identify operational cost savings. An RMU pilot program could be implemented to test operations on the AVL, identify an operator, labor agreements, maintenance needs, system infrastructure upgrades, federal needs and requirements, and funding sources.

STUDY RESOLUTION

At the July 25, 2019 Metro Board Meeting, both the Metrolink Antelope Valley Line Study and the LAGF Study went before the Board of Directors to receive and file. The studies were both received and filed, and Directors Barger, Najarian, Krekorian, and Solis put forth the Antelope Valley Line Motion. The Motion supports the implementation of 60-minute and eventually, 30-minute bi-directional service on the AVL, and directs the CEO to pursue funding opportunities to bring the capital improvements required for these scenarios to “shovel-ready” status. The Motion programs $12.7 million towards getting four projects shovel ready to support the service increases. The Motion also supports the implementation of an RMU pilot program on the AVL and directs the CEO to coordinate with Metrolink in pursuit of grant funding opportunities for this program. Please see Appendix A.2 for further details.