PLANNING AND PROGRAMMING COMMITTEE
OCTOBER 18, 2017

SUBJECT: ORANGE LINE BUS RAPID TRANSIT IMPROVEMENTS

ACTION: APPROVE RECOMMENDATIONS

RECOMMENDATION

APPROVE:

A. the findings and recommendation resulting from the Orange Line Bus Rapid Transit Improvements Technical Study; and

B. advancing Orange Line Bus Rapid Transit Improvements into the public engagement, environmental review and engineering design concurrent processes.

AMENDMENT BY DUPONT-WALKER AS AMENDED BY SOLIS

I MOVE THAT the recommendation be amended to carry the seven potential stand-alone grade separations identified in the consultant report* forward into the environmental process for further consideration a project alternatives, and that MTA coordinate closely with LADOT on the environmental, stakeholder, and public review processes to refine and better identify potential traffic delay and other impacts to affected intersections.

AMENDMENT BY SOLIS: to explore cost-sharing with the City so that we could look at structure that might include the City and the COG.

DISCUSSION

Overview of Metro Orange Line

The MOL is a multi-modal transportation corridor. MOL provides a vital high-capacity transit link for San Fernando Valley and extends nearly 18 miles in length from the North Hollywood Metro Red Line station to Chatsworth, with a spur to Warner Center. It is a highly successful transit line in Metro’s network, with approximately 25,000 daily riders.
Technical Study Analysis

A Technical Study was authorized by the Board in January 2016. Improvements studied included grade separations, minor street closures, better transit signal priority technology, electronic bus connectivity to facilitate bus platooning and a four quadrant gating system. The core goal is to improve operating speeds/reduce bus travel times to move customers more efficiently and safely. Six alternatives were packaged together out of numerous individual, potential improvements. Four alternatives studied a different mix of grade separations. One alternative studied solely using gating at all intersections. Another alternative evaluated a mix of grade separations and gating.

Technical Study Key Findings

Details of the Technical Study are outlined in Attachment A. Key findings are as follows:

- The gating system accomplished the highest benefit for the least cost relative to the other improvements. It allows buses to travel much faster than the current average of 21 miles per hour through roadway intersections while also improving safety by lowering the risk of vehicle intrusions into the busway.

- Gating is a cost-effective approach to providing an equitable distribution of safety improvements along the busway, which allows for a time saving that is cumulatively substantial. With gating, there is far less benefit to closing minor roads in the MOL corridor, as gating would reduce uncertainty for bus drivers at the crossings and improve travel times and safety.

- Grade separations of major arterial roadways did not achieve the hoped-for benefit in time savings because the stations located at these intersections required buses to stop anyway and are costly. Grade separations provide an equivalent or superior safety improvement but, due to the cost, the safety improvement is limited to those grade separated intersections, versus a busway-length deployment of safety gating.

- In general, the minor roads identified as high candidates for closure were found to be important for local access, complicating closures as a solution.

The alternative that studied a mix of gating and grade separation performed substantially better in all measures compared to the other alternatives and fits within the Measure M budget.

- Travel time is reduced by 16 minutes between the North Hollywood station and Chatsworth stations (12 minutes to Canoga Park station) when combined with enhanced bus operations.

- Daily ridership could be increased by over 10,000. Vehicular cross-traffic wait time is longer when the gates are down as compared to existing road traffic signal condition, but the gates only come down to stop traffic when needed for a bus crossing and all other times will be open for the cross traffic. Also, the gates will be coordinated for bicycle and pedestrian users of the Class I bike path, in certain circumstances.

- Preliminary analysis indicates a change in cross-vehicle travel time to be a few seconds different during peak periods and is significantly improved during off-peak than without this Project. As the project advances further into the design and technical study processes, the results from these performance metrics may change.
Recommended Alternative

The recommended alternative addresses all modes along and crossing the corridor in a manner that will be more efficient and enhances safety. It is found to be consistent with the project in the Measure M Ordinance.

The recommended alternative involves a package of capital improvements:

- A new single-grade separation structure would span from Van Nuys to Sepulveda Boulevards and the existing stations at these locations would be relocated vertically to the new structure with side-loading station platforms. The new structure would also span three intersecting streets in between. The grade separation structure and stations would be designed to accommodate the long-term plan to convert MOL to light rail transit (LRT).

- All other intersections along the busway between North Hollywood and Chatsworth stations would receive four quadrant safety gates of the type used for LRT.

- The Class I bike path adjacent to the span of the busway grade separation structure would, at a minimum, be grade separated at Van Nuys and Sepulveda Boulevards; another design option would grade separate the same span as the busway structure.

- All the existing Class I bike path intersections with roadways would retain signalization, including at Van Nuys and Sepulveda Boulevards for local access.

- One minor street, Tyrone Avenue, would be closed to accommodate the busway grade separation structure.

- Other operational improvements to MOL may be implemented, which do not involve significant capital improvements.

Reasoning for Recommended Alternative

This alternative is recommended because:

- It achieves superior and significant travel time savings for MOL of up to 16 minutes/29 percent each direction;

- Ridership could be increased by approximately 39 percent;

- It readies the transportation corridor for LRT conversion;

- Safety is markedly improved by nearly eliminating vehicular intrusions into the busway; and

- It fits within the Measure M budget, based on the conceptual engineering done to date.

Moreover, this alternative provides commensurate improvements to the adjacent regionally-significant active transportation facility, in furtherance of first-last mile connectivity to transit. It also accommodates two other planned, intersecting transit: East San Fernando Valley and Sepulveda Pass Transit Corridors. This alternative would be designed to support the creation of Transit-oriented Communities (TOC). Therefore, it does not preclude or complicate a potential, future update of the land use plan and zoning to support the creation of TOC at this mobility hub by the City of Los
Angeles, should the City decide to do so.

Measure M Consistency Finding

The Measure M ordinance identifies the capital investment as “Orange Line BRT Improvements” with a groundbreaking date of FY2019 and an opening date of FY2025. Footnote “n” states, “Critical grade separation(s) will be implemented early through Operation Shovel Ready.” The Operation Shovel Ready Initiative was transmitted to the Board in January 2016 as an informational memorandum. The approach of the Initiative is to bring projects to a “Shovel-Ready” state that enables Metro to take advantage of potential opportunities, which may develop and allow the projects to advance into the engineering design and construction stage sooner than planned. While assumptions were made for the purposes of preparing the Measure M Expenditure Plan, all Measure M project descriptions are finalized after planning study, public engagement and environmental review. The final project description must be consistent with the project identified in the Measure M ordinance.

The recommended alternative is consistent with the Measure M ordinance. It allows for a faster build because it is less intense to construct overall. It allows for the fastest ride and greatest travel time improvements of all the alternatives studied, including a fiscally unconstrained alternative with five arterial roadway grade separations. And it is future ready because the improvements are designed to accommodate LRT to the extent feasible now. Measure M provides for converting MOL to LRT, with an opening date of FY2057. Because Measure M identifies the groundbreaking date for this project as FY2019, the recommendation is also consistent with Operation Shovel Ready, since the planning, environmental and design work must occur promptly to allow this early action project to be developed on schedule.

Additionally, the alternative accommodates the integration with two other planned Measure M projects: the East San Fernando Valley and Sepulveda Pass Phase 2 Transit Corridors. Importantly, the proposed combined grade separation and gating improvements allow MOL to be grade separated from these other two planned transit corridors.

Staff finds that each feature of the recommended alternative is distinctly consistent with Measure M:

- The busway grade separation structure provides for the critical separation set forth in footnote “n” of Measure M.
- It is critical because it separates the busway from two sub-regional arterial roadways with high peak period traffic volumes and accommodates future planned regional transit corridors by eliminating incompatible crossings of transit lines.
- Safety gating of all other intersections with the busway is a critical MOL corridor improvement because the safety benefits directly correlate with reducing bus travel times, while having a minimal effect on vehicular cross-traffic when combined with enhanced bus operations.
- The Class I bike path grade separation adjacent to the busway grade separation improves first-last mile connectivity by providing safer and faster active transportation crossings of Sepulveda and Van Nuys Boulevards, which is an MOL corridor improvement.
- Closure of Tyrone Avenue is necessary to accommodate the busway grade separation structure and does not significantly affect access or negatively impact traffic.
The gating and project design also accommodates future LRT service, with the stations also being designed to accommodate LRT to the extent feasible now.

Considerations

While a good solution, every proposed capital improvement comes with its own set of issues to consider and address. The recommended alternative introduces safety gating that includes the standard warning bell sound. Some stakeholders may have hoped that the grade separations would have a substantial benefit to reducing vehicular travel times across the valley. Because this is an investment in MOL improvements, as set forth in Measure M, improving sub-regional roadway travel congestion was outside the scope of the this capital investment, but was a consideration when evaluating the effect of the project on vehicular cross-traffic. Measure M provides local return and Multi-year Sub-regional Funds that may be used for improving local and sub-regional roadway travel times. Construction impacts will occur, mostly associated with the grade separation component. The construction plan will need to maintain bus, bicycle, pedestrian and vehicular access and service to the maximum extent that is reasonably feasible. Detailed engineering design has not yet been done. This additional step in the pre-development process may result in value engineering. Also, the project cost estimate will continue to be updated as the engineering advances. If any significant changes are identified that the affect the future project description, the Board will be notified and provided with options for consideration.

DETERMINATION OF SAFETY IMPACT

This Board action will not have any adverse safety impacts on Metro’s employees and patrons. The Board is only authorizing additional study and engagement; no operational changes or construction result from this Board action.

FINANCIAL IMPACT

The FY 2017-18 budget includes $750,000 in Cost Center 4370 (Transit Corridors Planning), Project 471405 (Orange Line Grade Separation) to support the environmental phase for the Metro Orange Line Grades Separations/Other Improvements project. Since work on this project would be multiyear, it will be the responsibility of the cost center manager and Chief Planning Officer to budget funds in future years.

In addition, FY 2017-18 budget includes $8,200,000 in Cost Center 8510, Project 471405 (Orange Line BRT Improvements) for engineering support and advanced utility relocation designs. Since work on this project would be multiyear, it will be the responsibility of the Project Manager and Chief Program Management Officer to budget funds in future years.

In June 2017, the Board of Directors authorized the CEO to execute a contract for Supplemental Engineering Services for Engineering Design of Rail and Highway Transportation Projects on a task order basis in the amount of $15,000,000 with options for a total contract value not to exceed $20,000,000, and execute individual Task Orders and changes within the Board approved contract amount. Since this is a multi-year project, the Chief Program Management Officer and the Project Manager will be responsible for budgeting for costs of future task orders related to this contract.

Measure M provides $286 million in 2015 dollars for MOL improvements. A preliminary estimate
suggests that the recommended project fits within that budget. A refined cost estimate will be
determined during the preliminary engineering phase. The source of funds for this recommendation
is Measure M 35% funds earmarked for MOL Improvements, which is not eligible for bus and rail
operating expenditures.

ALTERNATIVES CONSIDERED

The Board could consider:

1. Selecting another alternative from the Technical Study as the preferred alternative;

2. Identifying multiple alternatives from the Technical Study to be advanced further into the
design process, without selecting a preferred alternative now; or

3. Directing staff to study alternatives that were not previously considered.

These alternative Board actions are not recommended because of the reasons staff discussed in
reaching its recommendation. Alternatives that exceed the Measure M budget are infeasible and
based on the technical study are unlikely to achieve the goal of improving MOL. Declining to move
the study forward is inconsistent with the Measure M ordinance and is therefore not an alternative
considered.

NEXT STEPS

Environmental Review

Staff is currently evaluating the applicable environmental determination on the future project, ranging
from a statutory exemption to an Environmental Impact Report. Additional design, study and public
engagement will determine the appropriate environmental clearance for the future project. Should it
be found exempt from California Environmental Quality Act (CEQA), thorough documentation will
justify that determination.

Areas of Coordination

In addition to the public and stakeholder engagement process, special coordination is required to
implement the recommended alternative. As it is entirely within the City of Los Angeles, the City of
Los Angeles Department of Transportation (LADOT) will need to approve gating of its streets, since
the Public Utilities Commission does not regulate gating for buses. The application of gating for
buses, while not inconsistent with the California Manual on Uniform Traffic Control Devices, will
require further coordination and possibly formal approval from the Federal Highway Administration
and review by the California Traffic Control Devices Committee.

Public and Stakeholder Engagement

No formal public engagement occurred as part of the Technical Study. The Technical Study created
and analyzed alternatives, which gives the public feasible options to consider, in addition to the
recommended alternative. This approach was taken because MOL is not a blank slate; it is an
existing facility. Therefore, the Technical Study facilitated the focus necessary as a prerequisite to
public engagement. Informal stakeholder engagement did occur, primarily with LADOT.
Metro will conduct a robust public engagement program to share information and gather input from key stakeholders. In addition to coordinating with LADOT, the public engagement will target a range of stakeholders and general public with a potential interest in the project. This recommended project is subject to further consideration following the public engagement process.

In conclusion, following the Board’s action, staff would simultaneously initiate the public and stakeholder engagement process, initiate the environmental review process, along with conducting engineering design to advance the future project and remain on schedule. Staff will report back on the outcomes from public engagement, environmental review and design development in 2018.

ATTACHMENTS

Attachment A - Metro Orange Line Grade Separations/Other Improvements Technical Study Executive Summary
Attachment B - Presentation

Prepared by: Fulgene Asuncion, Senior Manager, Countywide Planning & Development, (213) 922-3025
Fanny Pan, Senior Director, Countywide Planning & Development, (213) 922-3070
Laura Cornejo, Deputy Executive Officer, Countywide Planning & Development (213) 922-2885
David Mieger, Executive Officer, Countywide Planning & Development, (213) 922-3040
Manjeet Ranu, Senior Executive Officer, Countywide Planning & Development, (213) 418-3157

Reviewed by: Therese McMillan, Chief Planning Officer, Countywide Planning & Development, (213) 922-7077
Greg Kildare, Chief Risk, Safety & Asset Management Officer, (213) 922-4971
Rick Clarke, Chief Program Management Officer, (213) 922-7557
Jim Gallagher, Chief Operations Officer, (213) 418-3108
Pauletta Tonilas, Chief Communications Officer, (213) 922-3777

Phillip A. Washington
Chief Executive Officer
DOCUMENT VERSION CONTROL

<table>
<thead>
<tr>
<th>DOCUMENT NAME</th>
<th>SUBMITTAL DATE</th>
<th>VERSION NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 10.0 Executive Summary Draft</td>
<td>June 7, 2017</td>
<td>1.0</td>
</tr>
<tr>
<td>Task 10.0 Executive Summary Draft</td>
<td>June 13, 2017</td>
<td>2.0</td>
</tr>
<tr>
<td>Task 10.0 Executive Summary Final</td>
<td>August 25, 2017</td>
<td>3.0</td>
</tr>
<tr>
<td>Task 10.0 Executive Summary Final</td>
<td>September 14, 2017</td>
<td>4.0</td>
</tr>
<tr>
<td>Task 10.0 Executive Summary Final</td>
<td>September 19, 2017</td>
<td>5.0</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

1.0 Introduction .. 4
2.0 Project Purpose and Need .. 4
3.0 Evaluation, Screening, and Recommended Improvements ... 9
4.0 Potential Four Quadrant Gate Systems .. 15
5.0 Recommended Base Alternative .. 16
6.0 Alternative Options .. 20
7.0 Travel Demand Forecasting Model Summary .. 24
8.0 Future LRT Conversion Considerations .. 24
9.0 Parking Impacts .. 25
10.0 Funding Summary ... 25
11.0 Next Steps ... 26

TABLES

- Table 1 – Evaluation Criteria and Performance Measures ... 9
- Table 2 – Needs Analysis Matrix: Initial Improvement Based on Needs Analysis Findings 10
- Table 2 – Needs Analysis Matrix: Initial Improvement Based on Needs Analysis Findings (continued) 11
- Table 3 – Summary of Potential Improvements and Associated Technical Analysis Findings 13
- Table 4 – Recommended MOL Corridor Improvements ... 19
- Table 5 – Bike Path Grade Separation Alternatives ... 19
- Table 6 – Summary of Potential Alternative Options (MOL North Hollywood to Canoga Segment) 21
- Table 7 – Summary of Ridership Forecasts .. 24
- Table 8 – Summary of Temporary Parking Loss .. 25
- Table 9 – MOL Measure M Expenditure Plan ... 25

FIGURES

- Figure 1 – MOL Travel Time Comparison (North Hollywood to Chatsworth) .. 5
- Figure 2 – Key Operational Highlights .. 6
- Figure 3 – Study Area .. 7
- Figure 4 – Potential Improvement at Each Crossing ... 14
- Figure 5 – Recommended Base Alternative (Package A-1) .. 17
1.0 INTRODUCTION
The Metro Orange Line Grade Separation Analysis and Operational Improvements Technical Study evaluated the feasibility of grade separation improvements at key intersections and other improvements that would enhance existing bus service, performance, and ridership. Other improvements considered included minor street closures, better transit signal priority technology, improved bus signal communication, and a four quadrant gating system. This study covers approximately 12.7 miles of the MOL from the North Hollywood station to the Canoga station, and it does not include the Warner Center or the Chatsworth extensions.

At the conclusion of the feasibility study, several packages of improvements were identified to be brought to the Metro Board. Among the packages of improvements, a single recommended option was developed for the Board’s consideration. This alternative would address the operational needs of Orange Line buses and passengers, and improve safety at all the intersections while also falling within the budget allocated in the Measure M Expenditure Plan for Orange Line Bus Rapid Transit (BRT) improvements. This document further details the technical analysis and ultimate recommendation.

2.0 PROJECT PURPOSE AND NEED
To improve operations, address safety concerns, minimize environmental and community impacts, and ensure cost effectiveness, several types of improvements were evaluated throughout this technical study. The purpose of the project is to identify the optimal improvements to address specific goals, as described further below:

- Improve Operating Speeds - Improving operating speeds addresses current public complaints of excessive cross-Valley travel times and delays at intersections. Year 2015 intersection crossing speed for MOL buses was 10 miles per hour (mph). In 2016, intersection crossing speeds were increased to 15/25 mph. When the MOL is modeled with improved intersection crossing speeds of 25 mph (crossings adjacent to stations) and 35 mph (at all other crossings) and at the posted speed limit between stations, travel time savings of nearly four minutes may be achieved. Figure 1 shows the MOL modeled travel time savings with the implementation of higher intersection crossing speeds. Travel time savings may likely be higher with additional enhancements such as grade separations or gate systems, to reduce the potential for unsafe behaviors by cross street traffic (vehicles, pedestrians, and bicycles) crossing the busway.
Address Safety Concerns - Given current incident data, there are key locations that would benefit from improvements along the MOL corridor to reduce conflicts between MOL buses, vehicles, bicyclists, and pedestrians. In particular, grade separations at key intersections can minimize conflicts and prevent incidents by physically separating the MOL corridor, potentially including the adjacent bike path, from the crossing roadways. Controlled crossings (e.g., gate controls) would address safety concerns by managing and restricting vehicle and bicycle/pedestrian interactions with MOL operations. Overall, the MOL corridor experienced 23 bus-involved collisions between 2015 and 2016, and these collisions would likely be reduced by additional crossing improvements analyzed as a part of this project.

Benefit the Surrounding Community – Improvements to the MOL corridor can increase bus speeds, decrease end-to-end travel times, increase ridership, improve safety conditions, and provide better overall mobility options for the San Fernando Valley. However, any improvements along the MOL corridor will need to consider impacts during construction and on existing and planned transportation facilities during operation. This includes effects and potential impacts to existing circulation (vehicular, bicycle and pedestrians), land use impacts, effects to transit connectivity, changes to roadway and intersection configurations, effects to parking supply, minimizing pedestrian and bicycle impacts, and any degradation to traffic operations on adjacent streets. It would not be desirable to significantly delay existing MOL riders during construction, as this could reduce ridership by creating lengthy off-corridor detours for the MOL buses. The 2012 Orange Line BRT Sustainable Corridor Implementation Plan (Implementation Plan) called for substantial investment in the corridor including additional housing in station areas and improved active transportation access to/from stations. The Implementation Plan also described the need for short- and long-term operational improvements along the corridor, such as better signal timing, crossing gates, and grade separation at specific intersections. It is important that improvements to the MOL corridor incorporate and reflect these plans and programs, and consider any impacts/effects to San Fernando Valley neighborhoods and communities.
• **Ensure Cost Effectiveness** - The MOL is a successful system as it has an estimated ridership of 25,090 weekday daily boardings (2016 year to date) through the San Fernando Valley. As a Bus Rapid Transit (BRT) facility, the MOL has delivered cost-effective service with an estimated $10 cost per new daily transit trip compared to a light rail service of around $25 per new rider. Improvements to the MOL corridor must ensure costs are commensurate with benefits to continue the overall cost effectiveness of the system. This goal is to ensure financial feasibility in order for the project to achieve reasonable benefits today and in the long term. Short-term improvements must be designed to not preclude conversion to LRT in the future.

Key operational highlights of the existing busway are as shown in **Figure 2**

![Figure 2 – Key Operational Highlights](image)

The project study area is shown in **Figure 3**.
Figure 3 – Study Area
Since the project began in September 2016, the project team has conducted the following tasks: Developed a clear purpose and need statement, conducted a review of existing conditions, developed screening criteria to identify improvements and alternatives for further evaluation, conducted detailed technical analyses of a variety of improvements, prepared a preliminary environmental checklist, performed travel demand modeling, developed a matrix of recommended solutions, identified a series of improvement packages for consideration as a part of an identified Measure M expenditure, and identified a recommended base alternative with other options as alternatives for further consideration and study. All these tasks were conducted in order to further document and evaluate the criteria specified in the project’s purpose and need statement, as shown below:

The Metro Orange Line Grade Separation and Operational Improvements Technical Study seeks to provide safe and cost-effective strategies to improve operating speeds, capacity, and safety, while addressing passenger needs and minimizing disruption to the San Fernando Valley residents.
3.0 EVALUATION, SCREENING, AND RECOMMENDED IMPROVEMENTS

Based on the factors described in the purpose and need statement, the project team identified the following goals, criteria, and performance metrics:

<table>
<thead>
<tr>
<th>GOAL</th>
<th>CRITERIA</th>
<th>PERFORMANCE MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improve Operating Speeds</td>
<td>Reduce bus delays from red lights</td>
<td>Average bus speed at crossing</td>
</tr>
<tr>
<td></td>
<td>Reduce overall person-delay</td>
<td>Red light delay for buses at crossing</td>
</tr>
<tr>
<td></td>
<td>Improve consistency of bus speeds across the corridor</td>
<td>Total rider delay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average bus speed per segment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stop-to-stop travel time</td>
</tr>
<tr>
<td>Address Safety Concerns</td>
<td>Decrease modal conflicts at crossings</td>
<td>Collisions with buses</td>
</tr>
<tr>
<td></td>
<td>Improve pedestrian and bicyclist safety</td>
<td>Collisions from right-turn-on-red violations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visibility restrictions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Near-miss collisions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bicycle/pedestrian collisions</td>
</tr>
<tr>
<td>Benefit the Surrounding Community</td>
<td>Serve surrounding community</td>
<td>Population & employment density</td>
</tr>
<tr>
<td></td>
<td>Preserve/enhance pedestrian and bicycle connections</td>
<td>Traffic volumes of cross-streets</td>
</tr>
<tr>
<td></td>
<td>Reduce delays for cross-traffic</td>
<td>Level-of-service of cross-streets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Per-lane volumes of cross-streets</td>
</tr>
<tr>
<td>Ensure Cost Effectiveness</td>
<td>Maximize cost-effectiveness</td>
<td>Capital costs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Operations and maintenance costs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annual cost/ridership added</td>
</tr>
</tbody>
</table>

The evaluation criteria and performance metrics were used to screen all crossings to identify the need for potential improvements, as shown in Table 2 below. The specific improvements for each crossing, as identified via the needs analysis summarized in Table 2, are shown on Figure 6.
Table 2 – Needs Analysis Matrix: Initial Improvement Based on Needs Analysis Findings

<table>
<thead>
<tr>
<th>Crossing</th>
<th>Need for Improvement</th>
<th>Key Issues</th>
<th>Initial Improvement</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Improve Operating Speeds</td>
<td>Address Safety Concerns</td>
<td>Benefit Surrounding Community</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>MED</td>
<td>HIGH</td>
<td>- High impacts on average bus speeds</td>
</tr>
<tr>
<td>Laurel Canyon Blvd</td>
<td>HIGH</td>
<td>MED</td>
<td>HIGH</td>
<td>- High numbers of collisions</td>
</tr>
<tr>
<td>Woodman Ave</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>- Visibility restrictions</td>
</tr>
<tr>
<td>Sepulveda Blvd</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>- High cross-traffic volumes</td>
</tr>
<tr>
<td>Balboa Blvd</td>
<td>HIGH</td>
<td>HIGH</td>
<td>MED</td>
<td>-</td>
</tr>
<tr>
<td>Reseda Blvd</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>LOW</td>
<td>LOW</td>
<td>-</td>
</tr>
<tr>
<td>Tujunga Ave</td>
<td>HIGH</td>
<td>LOW</td>
<td>LOW</td>
<td>-</td>
</tr>
<tr>
<td>Colfax Ave</td>
<td>HIGH</td>
<td>LOW</td>
<td>LOW</td>
<td>-</td>
</tr>
<tr>
<td>Corteen Pl</td>
<td>MED</td>
<td>LOW</td>
<td>MED</td>
<td>-</td>
</tr>
<tr>
<td>Whitsett Ave</td>
<td>MED</td>
<td>LOW</td>
<td>MED</td>
<td>-</td>
</tr>
<tr>
<td>Coldwater Canyon Ave</td>
<td>HIGH</td>
<td>LOW</td>
<td>MED</td>
<td>-</td>
</tr>
<tr>
<td>Chandler Blvd</td>
<td>HIGH</td>
<td>LOW</td>
<td>MED</td>
<td>-</td>
</tr>
<tr>
<td>Fulton Ave/Burbank Blvd</td>
<td>HIGH</td>
<td>LOW</td>
<td>MED</td>
<td>-</td>
</tr>
<tr>
<td>Oxnard St</td>
<td>HIGH</td>
<td>LOW</td>
<td>MED</td>
<td>-</td>
</tr>
<tr>
<td>Hazeltine Ave</td>
<td>MED</td>
<td>LOW</td>
<td>MED</td>
<td>-</td>
</tr>
<tr>
<td>Tyrone Ave</td>
<td>LOW</td>
<td>MED</td>
<td>MED</td>
<td>-</td>
</tr>
<tr>
<td>Van Nuys Blvd</td>
<td>MED</td>
<td>MED</td>
<td>HIGH</td>
<td>-</td>
</tr>
<tr>
<td>Kester Ave</td>
<td>MED</td>
<td>HIGH</td>
<td>MED</td>
<td>-</td>
</tr>
<tr>
<td>Sepulveda Station (ped Xing)</td>
<td>MED</td>
<td>LOW</td>
<td>MED</td>
<td>-</td>
</tr>
<tr>
<td>Woodley Ave</td>
<td>HIGH</td>
<td>MED</td>
<td>MED</td>
<td>-</td>
</tr>
<tr>
<td>White Oak Ave</td>
<td>MED</td>
<td>LOW</td>
<td>MED</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 2 – Needs Analysis Matrix: Initial Improvement Based on Needs Analysis Findings (continued)

<table>
<thead>
<tr>
<th>Crossing</th>
<th>Need for Improvement</th>
<th>Key Issues</th>
<th>Initial Proposed Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Improve Operating Speeds</td>
<td>Address Concerns Safety Benefit Surrounding Community</td>
<td>- Impacts on average bus speeds - Red light delay - Presence of current collisions or near misses - Varying levels of cross-traffic volumes</td>
</tr>
<tr>
<td>Lindley Ave</td>
<td>LOW</td>
<td>MED</td>
<td>MED</td>
</tr>
<tr>
<td>Wilbur Ave</td>
<td>HIGH</td>
<td>LOW</td>
<td>LOW</td>
</tr>
<tr>
<td>Tampa Ave</td>
<td>MED</td>
<td>MED</td>
<td>MED</td>
</tr>
<tr>
<td>Corbin Ave</td>
<td>MED</td>
<td>MED</td>
<td>LOW</td>
</tr>
<tr>
<td>Victory Blvd</td>
<td>HIGH</td>
<td>LOW</td>
<td>MED</td>
</tr>
<tr>
<td>Winnetka Ave</td>
<td>MED</td>
<td>MED</td>
<td>MED</td>
</tr>
<tr>
<td>Mason Ave</td>
<td>LOW</td>
<td>HIGH</td>
<td>LOW</td>
</tr>
<tr>
<td>De Soto Ave</td>
<td>LOW</td>
<td>MED</td>
<td>HIGH</td>
</tr>
<tr>
<td>Agnes Ave (ped Xing)</td>
<td>MED</td>
<td>LOW</td>
<td>LOW</td>
</tr>
<tr>
<td>Bellaire Ave</td>
<td>LOW</td>
<td>LOW</td>
<td>MED</td>
</tr>
<tr>
<td>Goodland Ave (ped Xing)</td>
<td>LOW</td>
<td>LOW</td>
<td>MED</td>
</tr>
<tr>
<td>Ethel Ave</td>
<td>MED</td>
<td>LOW</td>
<td>LOW</td>
</tr>
<tr>
<td>Vesper Ave</td>
<td>LOW</td>
<td>LOW</td>
<td>MED</td>
</tr>
<tr>
<td>City of LA (private Xing)</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
</tr>
<tr>
<td>Densmore Ave (gated driveway)</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
</tr>
<tr>
<td>Driveway (private)</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
</tr>
<tr>
<td>Hayvenhurst Ave (ped Xing)</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
</tr>
<tr>
<td>Zelzah Ave (ped Xing)</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
</tr>
</tbody>
</table>

Note: Crossings listed in **bold** indicate the presence of a MOL station.
Detailed technical analyses were completed for the following aspects of each identified improvement alternative, for each selected location:

- Potential minor street closures
- Conceptual design and cost estimates
- Operating plans
- Traffic impacts
- Traffic management and construction staging plans
- Parking impacts
- Right-of-way survey and maps
- Conceptual geotechnical investigation
- Utility investigation
- Conceptual hydraulics and hydrology study
- Four quadrant gate system feasibility

A number of detailed technical studies were prepared to address specific aspects and improvements. The results of these technical studies are documented in independent technical memoranda. A summary of the technical analyses is presented in Table 3 and shown in Figure 4.

Additional improvements are currently planned for the MOL, and include the following:

- **Canoga shortline operations** – In order to provide improved service for the portions of the MOL experiencing the highest passenger loads, Metro conducted public outreach for potential implementation of a new shortline service at Canoga. This new service will provide a shortline turnaround loop for buses and operate between the North Hollywood and Canoga and/or other stations, adding additional capacity.

- **Electric buses** – Metro is planning on operating 100% electric buses on the MOL in the near future, following Board approval of new electric buses for the MOL corridor in July 2017. These buses will be significantly quieter than existing buses, which should improve adverse noise levels along the corridor. It is anticipated that the new buses will be delivered and in operation along the MOL corridor by 2020.

- **On-board WiFi** – Metro is currently exploring means for providing on-board WiFi service on MOL buses. This service would improve the quality of a rider’s experience, and could potentially increase ridership.

- **Canoga Transit Hub** – Metro is considering a new Transit Hub at the Canoga Station to better coordinate with other local services and possibly a new Warner Center shuttle service that would provide more stops along the way to the Transit Center at Owensmouth Avenue.
Table 3 – Summary of Potential Improvements and Associated Technical Analysis Findings

<table>
<thead>
<tr>
<th>Improvement</th>
<th>Bus Travel Time Change</th>
<th>Change in Cross-Street Traffic Delays</th>
<th>Safety Benefit</th>
<th>Cost $1</th>
<th>Other Issues</th>
</tr>
</thead>
</table>
| Grade Separation | **Reduction** of approx. 1 min per bus per grade separation | **Reduction** in average peak hour delay of approximately 5 seconds per vehicle per grade separation
 Note that the reduction in delay is directly related to adjacent traffic signals, and is greatest in those locations where the existing MOL crossing is adjacent to other traffic signal controlled intersections | Removes potential for bus/vehicle/bike/ped conflicts for buses within the MOL corridor | $50 M - $100 M per grade separation | Potential interruption of existing bus/bike path operations
 Potential reduction of Metro-owned parking
 Potential utility conflicts |
| Improved Transit Signal Priority (TSP) | **Reduction** of less than 1 min per bus for the entire corridor | **Increase** in average peak hour delay of approximately 1-2 seconds per vehicle per crossing | Reduced potential for short stops by bus vehicles | $50 K per crossing
 Note that costs could increase if additional communication links are required | Maintenance/deployment challenges with in-vehicle transponders |
| Improved Bus-Signal Communication2 | **Reduction** of less than 1 min per bus for the entire corridor | **Increase** in average peak hour delay of approximately 1-2 seconds per vehicle per crossing | Reduced potential for short stops by bus vehicles | $50 K per crossing | Accuracy of real-time traffic signal information |
| Minor Street Closures | **Reduction** of approx. 40 sec per bus per closure | N/A (no cross traffic movements) | Removes potential for bus/vehicle/bike/ped conflicts for buses within the MOL corridor | $25 K - $100 K per closure (or higher) | Interruption of direct walking/bicycling paths in residential neighborhoods
 Reduced access for public safety vehicles |
| Four Quadrant Gate Systems | **Reduction** of approx. 48 sec per bus per gate system | **Increase** in average peak hour delay of approximately 7-8 seconds per vehicle per gate system location
 Note that gates would only operate when a bus is present, and changes in bus operations – such as platooning vehicles or operating at increased headways – could reduce the overall average delay experienced | Virtually removes potential for bus/vehicle/bike/ped conflicts for buses within the MOL corridor | $1.3 M per gate system (or higher) | May require further coordination with regulatory agencies, as the application of gates for a BRT system is unique
 Implementation challenges for fail-safe operation |

Notes:
1. Costs do not include ongoing operations and maintenance costs. Capital costs only
2. This improvement is being pursued as a separate initiative from the Office of Extraordinary Innovation.
Figure 4 – Potential Improvement at Each Crossing

Existing Transportation Network
- Metro Orange Line
- Metro Red Line
- Metro Rapid Line
- Metrolink Line

Potential Improvement
- Grade Separation
- Other Improvements (minor capital, operational, closure, and/or quadrant gate system)
4.0 POTENTIAL FOUR QUADRANT GATE SYSTEMS

As a part of the study, an additional analysis was conducted to evaluate the potential application of railroad-type gate systems as an additional traffic control and safety feature at MOL busway crossing intersections. This improvement would consist of the deployment of railroad-style four quadrant gate systems at at-grade intersection crossings along the MOL corridor. This improvement is considered technically feasible, and would require clear policy direction from Metro in regards to corridor access for non-bus vehicles. This improvement would result in the replacement of existing traffic signals controlling the buses at MOL intersection crossings with four-quadrant gate systems. The gate systems would require additional warning time, which would increase delays for cross-street traffic; however, the gates would only be activated when a bus is present, so the overall number of activations would potentially offset any travel delays over the course of a day. The analysis has identified the following factors that will determine the potential feasibility of such a system:

- A four quadrant gate system is technically feasible, utilizing existing technologies.
- Application of a four quadrant gate system on a BRT corridor would be unique, and it is recommended that Metro pursue formal discussions with the California Traffic Control Devices Committee (CTCDC) during development. It is unclear if the CTCDC would require formal approval of a gate system deployment for BRT.
- It is recommended that the gate system conform with existing guidelines, including and not limited to the California Manual on Uniform Traffic Control Devices (CA MUTCD), to the greatest extent possible.
- In order to comply with the CA MUTCD, application of a gate system at MOL crossings would require the removal of existing traffic signals currently controlling the bus movements at each crossing; traffic signals controlling vehicular movements on crossing streets would be modified or remain, consistent with traffic signal installations adjacent to other Metro rail crossings.
- With the removal of existing traffic signals controlling the buses and replacement with gate systems, it is recommended that Metro restrict access to the MOL busway to only authorized bus vehicles; any other vehicles would be subject to the right-of-way restrictions currently in-place on other Metro rail facilities throughout Los Angeles County.

Any gate system would require fail-safe operations, consistent with current rail systems. For the MOL corridor, fail-safe operations would be ensured by the following key principles:

1. Only Metro buses would be allowed to operate along the MOL corridor, consistent with current rail operations. All other vehicles (e.g., maintenance, public safety) would be required to adhere to Metro policies regarding access to Metro-owned rights-of-way.
2. Existing traffic signals controlling bus movements at street crossings would be removed and replaced with gate systems, in accordance with CA MUTCD requirements for light rail transit (LRT) signals. The gate systems would employ train signals to notify approaching buses of gate status – displaying a solid light when the gate system is activated and displaying a flashing light when the gate arms are down and the crossing is secured.
3. A combination of redundant vehicle detection systems would be required, to both activate the gate system when a bus was approaching, and to provide the required “check-in/check-out” functionality to ensure a bus has crossed the intersection. Additional features may be required at certain
locations, such as in-vehicle mounted equipment or a secured external control mechanism (similar to a “police key” on a traffic signal controller cabinet), to ensure that bus operators could trigger gate operations in the event of detector failure and/or extended loading/unloading time at adjacent station platforms.

In order to operate in a manner least impactful to cross-street traffic, it is recommended that the four quadrant gate systems fail in the upright position. Should a gate system fail to detect an approaching bus and not activate or if a vehicle were to stall on the crossing, the gate status signal would notify the bus operator that the gates were in the upright position, and the bus operator would then be required to stop before proceeding through the crossing. Approaches described under item 3 above could be used as an alternate gate activation technique.

5.0 RECOMMENDED BASE ALTERNATIVE

Initially four packages of improvements were developed for consideration, reflecting different combinations of grade separations and other operational improvements. An additional package was added, in order to consider the deployment of gate systems at all crossings. When these five packages were discussed with Metro staff during the course of recurring project meetings, it was ultimately determined that a hybrid package combining a variety of improvement measures would provide the maximum benefit and address the stated purpose and need to the greatest extent. Therefore, Package A-1 was developed as presented below.

Package A-1: Hybrid Solution (Grade Separations + Gate Systems)

Package A-1 (shown in Figure 5) proposes aerial grade separations at the Van Nuys and Sepulveda stations. The busway would be elevated the entire length from Van Nuys Station to Sepulveda Station, including the pedestrian crossing at Sepulveda Station and the station would be relocated over Sepulveda Boulevard. All roadway crossings between the Van Nuys and Sepulveda stations would remain open. Tyrone Avenue is the only roadway proposed to be closed. No changes are proposed to the other four pedestrian-only crossings located along the study segment, and the remaining 27 crossings would have gate systems installed.
The recommended base alternative, Package A-1, assumes that the majority of busway crossings along the 12.7-mile study segment would be protected by gate systems, as described previously in Section 4. As the gate systems require additional advance warning time, the recommended base alternative also assumes changes to busway operations to minimize cross-traffic delays. The recommended base alternative assumes that during peak periods, buses would operate in two-vehicle platoons at eight-minute headways. This operation would allow the busway to carry the same amount of peak period riders at increased headways, thereby reducing the frequency of gate activation and reducing associated potential cross traffic delays. It should be noted that the eight-minute headway needs to be further evaluated and approved by Metro Operations department. The recommended base alternative also assumes that bus vehicles would operate at the maximum civil speed allowed by Metro operations, when traveling within the busway. With the increased protection of the crossings provided by the gate systems and grade separations, bus operators will be able to operate at higher speeds at the crossings, and will therefore be able to operate at higher speeds on busway segments between crossings.

Under Package A-1, bus travel times would decrease by approximately 12.6 minutes (average for both directions), and average cross street traffic delays due to gate activations during peak periods would reduce by approximately 1.6 seconds per vehicle. Daily vehicle miles travelled (VMT) would decrease by about 81756, and the change in O&M costs would decrease by approximately 6.4 percent. The recommended base alternative assumes that the adjacent bike path would remain operational, and associated traffic signal controls for bike path crossings would be maintained. The signals controlling the bike path crossings would be connected to the busway crossings and gate systems, so that bikes could operate a push button to receive a signal to cross the intersecting streets, independent of gate system activation by MOL buses. This means that cross traffic would potentially face red lights due to bike crossings, assumed to be consistent with current levels of activation.

In terms of overall safety benefits, the hybrid package A-1 would provide the maximum potential improvement for the entire MOL corridor, as it allows for additional features that restrict and limit potential conflicting vehicular, pedestrian, and bicycle movements across the busway at the highest number of crossings. The combination of grade separations and gate systems would significantly impede the ability of cross-street traffic and pedestrians to illegally cross the busway while a bus was approaching or within the crossing, which would result in a significant reduction of bus-involved collisions.

It is important to note that although the focus of this feasibility study is the 12.7-mile east-west segment (from North Hollywood to Canoga), Metro seeks to provide improvements for the entire 18-mile MOL corridor, (from North Hollywood to Chatsworth). Recognizing this, Table 4 below presents a summary of the recommended improvements and associated performance metrics for all segments of the MOL corridor. As noted on the table, performance metrics and costs for improvements for the segments not included in this current feasibility study were developed using information provided by Metro. Additional evaluations and refinements will likely occur during subsequent environmental clearance and design phases.

From a cost/benefit standpoint, the recommended base alternative would provide improvements at 33 MOL crossings at an average cost of $8.5 M per crossing. By increasing protections at 33 crossings, Package A-1 provides the maximum potential reduction for the 23 bus-involved collisions that occurred along the MOL corridor between 2015 and 2016. Compared to the other alternative packages described in the next section, the recommended base alternative provides greater improvements at more crossings, at nearly half the cost.
per crossings.

Table 4 – Recommended MOL Corridor Improvements

<table>
<thead>
<tr>
<th>Segment</th>
<th>Recommended Improvements & Performance Metrics</th>
</tr>
</thead>
</table>
| East-West Segment (North Hollywood to Canoga) | • Hybrid Solution
 o 5 Grade separated crossings
 o 27 Gated crossings
 o 1 roadway crossing closures
 o $273 M (2017 $)
 o Average 12.6-minute travel time decrease
 • Maintain existing bike path |
| North-South Segment (Canoga to Chatsworth) | • Gates only (Not included in current study)
 o 7 Gated crossings
 o $10 M (2017 $)
 o Average 3.4-minute travel time decrease
 • Maintain existing bike path |
| Entire Corridor (North Hollywood to Chatsworth) | • Hybrid Solution (Not included in current study)
 o 5 Grade separated crossings
 o 34 Gated crossings
 o 1 roadway crossing closure
 o Bike path grade separation
 o $283 M (2017 $)
 o Average 16-minute travel time decrease
 • Maintain existing bike path |

Note:
1. Cost estimates include elevated bike path (described below) as well as side platform station configurations.
2. Cost estimates and performance metrics presented are rough estimates, due to the preliminary nature of the feasibility analysis. Subsequent environmental clearance and design phases will require further evaluation and analysis.

As an optional component of the recommended base alternative, a preliminary feasibility analysis of potential grade separations for the adjacent bike path was conducted, so that bike path users could cross over the busiest cross streets – Sepulveda and Van Nuys. The results of the preliminary feasibility analysis are presented below in Table 5. It is important to note that these results address only the engineering and operational feasibility, with a goal of identifying improvements that could be incorporated into the recommended base alternative to provide improved facilities for additional modes besides only buses and vehicles. There are many conceptual benefits of providing grade separations for the adjacent bike path over two of the most congested crossings along the MOL corridor, including safety and travel time benefits. There are also concerns regarding the feasibility of constructing, maintaining, and ensuring ongoing safety and security for separate grade separated bike path crossings. Therefore, additional evaluations and refinements will likely occur during subsequent environmental clearance and design phases.

Table 5 – Bike Path Grade Separation Alternatives

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Cost (2017 $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade Separated bike path from Sepulveda to Van Nuys (No local access between these crossings) – Long Bike Path option</td>
<td>$22.7M</td>
</tr>
<tr>
<td>Grade separated bike path at Sepulveda crossing and Van Nuys crossing only – Short Bike Path option</td>
<td>$12.8M</td>
</tr>
</tbody>
</table>
6.0 ALTERNATIVE OPTIONS

Using the findings of the detailed technical analyses, the project team identified feasible improvements for further consideration. The improvements were then compared to the preliminary environmental checklist and travel demand modeling results, in order to arrive at a group of recommended improvements. These recommended improvements were then grouped together into potential packages for further study and potential implementation. The improvement packages for the east-west segment portion of the MOL are summarized in Table 6 and described further below, and shown in Appendix A.
6. Under Package A-1, buses are assumed to travel at the maximum civil speed authorized by Metro within the corridor, ..., to-end travel times. Buses are also assumed to operate in two-vehicle platoons at increased headways (8-minute

5. O&M costs are rough estimates; see Appendix B for additional details.

4. Travel demand model derived ridership; actual existing (Year 2016) ridership averages 25,090 daily passengers on weekdays.

3. Average for all signalized crossings between North Hollywood and Canoga, and not indicative of specific crossings.

2. Does not include station dwell time, as dwell time is highly variable per station and time of day.

Notes:

* Travel Demand Model results are preliminary in nature, due to the preliminary nature of this technical study. Since changes in ridership and VMT are related to increased bus travel speeds, it is assumed that the estimates of Ridership and VMT change would change slightly from what is currently shown with further refinements to the proposed alternatives. Similarly, O&M costs for Package A-1 were not provided. These items would be refined in subsequent environmental clearance and design phases.

7. A 5.5% contingency was added to all cost estimates, on top of individual contingencies for specific elements, to account for the preliminary nature of this technical study.

1. Contingency (5.5%)
Package A: Van Nuys & Sepulveda + Reseda
Package A (shown in Figure 6a) proposes aerial grade separations at the Van Nuys, Sepulveda, and Reseda stations. The busway would be elevated the entire length from Van Nuys Station to Sepulveda Station, which is proposed to be relocated over Sepulveda Boulevard. All roadway crossings between the Van Nuys and Sepulveda stations would remain open. Tyrone Avenue is proposed to be closed as it required for the grade separation ramp structure. The package also includes bus-signal communication systems at pedestrian crossings (Agnes Avenue, Goodland Avenue, Hayvenhurst Avenue, and Zelzah Avenue). These crossings do no significant impact bus operations and could be good opportunities to pursue a bus-signal communications pilot program. The remaining crossings in the corridor would receive TSP improvements.

Under Package A, bus travel times would decrease by approximately six minutes (combined in both directions), and cross street traffic delays would decrease by an average of 0.4 seconds per vehicle. Daily VMT would decrease by about 11,100, and the change in O&M costs would decrease by approximately 2.5 percent.

Package B: Valley College & Woodman + Reseda
Package B (shown in Figure 6b) proposes two undercrossing grade separations at the Valley College and Woodman stations, and an aerial grade separation at Reseda Station. The Valley College and Woodman stations are proposed to be below-grade stations, and the busway would be lowered from at-grade to travel below-grade between the stations, crossing under Oxnard Avenue as well. Tyrone Avenue is proposed to be closed. The remaining crossings would receive the same bus-signal communication systems and signal improvements as recommended in Package A. In addition, the City of Los Angeles Bureau of Street Maintenance, Van Nuys District Yard driveway (referred in this document as City of Los Angeles driveway), located just east of the Sepulveda Boulevard crossing, would receive bus-signal communication system improvement.

Under Package B, bus travel times would decrease by approximately four minutes (combined in both directions), and cross street traffic delays would decrease by an average of 0.8 seconds per vehicle. Daily VMT would decrease by about 13,200, and the change in O&M costs would decrease by approximately 1.4 percent.

Package C: Woodman + Sepulveda + Reseda
Package C (shown in Figure 6c) proposes an undercrossing grade separation at Woodman Station and aerial grade separations at the Sepulveda and Reseda Stations. The Woodman Station is proposed to be a below-grade, station and the busway would be lowered from at-grade to travel below-grade in this area, crossing under Oxnard Street as well. Similar to Package A, the existing Sepulveda Station would be relocated to be over Sepulveda Boulevard. Tyrone Avenue is proposed to be closed. The remaining crossings would receive the same bus-signal communication systems and signal improvements as recommended in Package B.

Under Package C, bus travel times would decrease by approximately four minutes (combined in both directions), and cross street traffic delays would decrease by an average of 0.7 seconds per vehicle. Daily VMT would decrease by about 8,800, and the change in O&M costs would decrease by approximately 1.4 percent.

Package D: Fiscally Unconstrained (All Priority Grade Separations)
Package D (shown in Figure 6d) is fiscally unconstrained, and would grade separate all five priority grade
separations identified in Measure M. Tyrone Avenue is proposed to be closed. The remaining crossings would receive the same bus-signal communication systems and signal improvements as recommended in Package A.

Under Package D, bus travel times would decrease by approximately six minutes (combined in both directions), and cross street traffic delays would decrease by an average of 1.1 seconds per vehicle. Daily VMT would decrease by about 29,100, and the change in O&M costs would decrease by approximately 1.9 percent.

Package E: Gate Systems
This alternative (shown in Figure 6e) proposes deploying railroad-style four quadrant gated systems at all crossings along the corridor, except for the City of Los Angeles driveway and pedestrian crossings, which would receive bus signal improvements. No crossings are proposed to be closed.

Under this alternative, bus travel times would decrease by 12 minutes (per direction), and cross street traffic delays would increase by an average of 7.3 seconds per vehicle. Daily VMT would decrease by about 82,000, and the change in O&M costs would decrease by approximately 6.4 percent.

Detour Routing
The technical evaluation also included an analysis of potential detour routes for buses, bicycles, and pedestrians during construction of any of the grade separation alternatives. For bicycle and pedestrian routes, including the adjacent multi-modal bike path, the detours would route users to adjacent surface streets and signalized intersections. The goals for potential bus detours include:

- Maintain bus service during the construction period
- Maintain convenient passenger access to MOL service and connecting bus routes
- Avoid bus operations in construction zones
- Keep MOL service as close to the current ROW as possible
- Provide safe and efficient bus service operation during construction
7.0 TRAVEL DEMAND FORECASTING MODEL SUMMARY

Preliminary travel demand model forecasts were developed to determine potential ridership and VMT changes that would result from potential grade separations. Metro’s travel demand model was used to develop forecasts for the opening year of potential grade separations, anticipated as the year 2025 (based on the most recent Measure M funding plan). The project team reviewed detailed model inputs for accuracy and correctness, running the model stream and comparing the results to existing conditions for the modeling area. Changes were made in the model code to reflect current conditions and the 2025 horizon year, including modifications to socioeconomic data and updated transit information. Ridership forecasts were prepared for potential combinations of grade separations, and the results are presented on Table 7. The majority of the growth is forecast to occur during peak periods, with additional growth forecast in the off-peak periods. Maximum passenger loads are forecast for the Sepulveda station, consistent with current ridership.

<table>
<thead>
<tr>
<th>Forecast Scenario</th>
<th>Ridership Change</th>
<th>Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peak</td>
<td>Off-Peak</td>
</tr>
<tr>
<td>Base Year 2012</td>
<td>16,200</td>
<td>8,300</td>
</tr>
<tr>
<td>Year 2025 (No Build)</td>
<td>18,200</td>
<td>7,700</td>
</tr>
<tr>
<td>Year 2025 Package A</td>
<td>18,900</td>
<td>8,000</td>
</tr>
<tr>
<td>Year 2025 Package B</td>
<td>19,200</td>
<td>8,100</td>
</tr>
<tr>
<td>Year 2025 Package C</td>
<td>18,900</td>
<td>7,900</td>
</tr>
<tr>
<td>Year 2025 Package D</td>
<td>20,900</td>
<td>8,400</td>
</tr>
<tr>
<td>Year 2025 Gate Systems</td>
<td>26,100</td>
<td>9,900</td>
</tr>
</tbody>
</table>

8.0 FUTURE LRT CONVERSION CONSIDERATIONS

As the Measure M Expenditure Plan identifies future conversion of the MOL corridor to rail, stations at the proposed grade crossing locations would be designed to be convertible to future light rail transit (LRT) requirements. A feasibility study was conducted to evaluate the potential for temporarily raising the busway during BRT operations, and then lowering the guideway for future LRT operations, and this was determined to be infeasible. Other considerations regarding conversion of stations to LRT requirements include:

- Center platform design implemented for BRT operation (requires cross-over, similar to El Monte Busway)
- Platforms would be extended to three-car LRT length
- Platforms would be raised
- Canopies would be adjusted
- Escalators would be modified
9.0 PARKING IMPACTS

Existing Metro-owned parking facilities adjacent to proposed grade separations would be impacted both during construction and after, with the addition of new structures. Currently there are approximately 1,500 spaces available in Metro-owned parking facilities within the study area, and a total of 1,073 would potentially be lost if all proposed grade separations were constructed simultaneously. A summary of temporary parking losses by grade separation location is shown on Table 8.

<table>
<thead>
<tr>
<th>Location</th>
<th>Inventory</th>
<th>Temporary Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reseda</td>
<td>401</td>
<td>371</td>
</tr>
<tr>
<td>Sepulveda</td>
<td>531</td>
<td>249</td>
</tr>
<tr>
<td>Van Nuys</td>
<td>594</td>
<td>431</td>
</tr>
<tr>
<td>Woodman</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,548</td>
<td>1,073</td>
</tr>
</tbody>
</table>

10.0 FUNDING SUMMARY

Potential grade separations are included in the Measure M Expenditure Plan, as well as ultimate conversion of the MOL corridor to LRT. Funding is summarized in Table 9.

<table>
<thead>
<tr>
<th>Project (Final Project to be Defined by the Environmental Process)</th>
<th>Notes</th>
<th>Schedule of Funds Available</th>
<th>2016-2067 Local, State, Federal, Other Funding 2015$ (‘000s)</th>
<th>Measure M Funding 2015$ (‘000s)</th>
<th>Most Recent Cost Estimate 2015$** (‘000s)</th>
<th>Modal Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expenditure Plan Major Projects</td>
<td></td>
<td></td>
<td>Ground-breaking Start Date</td>
<td>Expected Opening Date (3 year range)</td>
<td>Subregion*</td>
<td></td>
</tr>
<tr>
<td>Orange Line BRT Improvements</td>
<td>n</td>
<td></td>
<td>FY 2019</td>
<td>FY 2025</td>
<td>sf</td>
<td>$0</td>
</tr>
<tr>
<td>Orange Line Conversion to Light Rail</td>
<td></td>
<td></td>
<td>FY 2051</td>
<td>FY 2057</td>
<td>sf</td>
<td>$1,067,000</td>
</tr>
</tbody>
</table>

Notes:

n. Critical grade separation(s) will be implemented early through Operation Shovel Ready.

* Subregion Abbreviations: sf = San Fernando Valley

** The most recent cost estimate equals the accelerated cost. Prior year expenses included in all project costs.

Source:
Los Angeles County Transportation Expenditure Plan – Fiscal Year 2018-2057
11.0 NEXT STEPS

Following completion of this technical study, Metro staff will initiate an environmental process and preliminary engineering design. Concurrently, Metro is pursuing a pilot study of potential gate systems to reduce the frequency of right-turn on red (RTOR) violations and collisions, and will be deploying new equipment at four intersections along the north-south segment between Canoga and Chatsworth to test the efficacy of gates to deter motorists from making illegal right hand turns across the busway.

A number of key issues will require further attention and analysis during subsequent project phases. The issues include:

- **Project-specific transportation and parking impacts** – Refined transportation and parking analyses should be conducted for the recommended base alternative, as a part of subsequent environmental clearance and design efforts.
- **Real estate/Right-of-way impacts** - Metro may need to initiate negotiations for right-of-way acquisitions included as a part of the recommended base alternative.
- **Utility impacts** - Further utility investigations should be conducted to confirm potential conflicts for the recommended base alternative, as a part of subsequent environmental clearance and design efforts.
- **Ridership impacts** – Forecast ridership increases indicate continued crowding of buses during peak periods, particularly for stations between Sepulveda and North Hollywood. The Reseda (or Canoga) Shortline operation may address these issues, and Metro should continue to monitor peak bus loads to ensure bus capacity can meet ridership demand.
- **Ongoing operations** – Metro will continue to monitor and adjust bus operations to address issues related to bus speeds and safety.
- **Multi-agency coordination** – Metro will continue to coordinate with LADOT and other stakeholder agencies to ensure potential improvements along the corridor are integrated into other concurrent projects.
- **Public outreach** – Metro will continue to reach out to community stakeholders, to ensure this vital transportation link continues to meet the mobility needs of the San Fernando Valley.
Orange Line BRT Improvements
Planning and Programming Committee
October 18, 2017
PROJECT SCHEDULE
- Groundbreaking Date: FY2019
- Opening Date: FY2025

PROJECT DESCRIPTION:
- “Orange Line BRT Improvements”
- “Critical grade separation(s) will be implemented early through Operation Shovel Ready”

PROJECT GOAL:
- Move Orange Line customers efficiently and safely
Comparisons

North Hollywood to Canoga

<table>
<thead>
<tr>
<th>Improvement / Benefit</th>
<th>Fiscally Constrained with 3 Grade Separations</th>
<th>Fiscally Unconstrained with 5 Grade Separations</th>
<th>Grade Separation from Van Nuys to Sepulveda + Gates</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS TRAVEL TIME REDUCTION</td>
<td>-4 min</td>
<td>-5.3 min</td>
<td>-12.6 min</td>
</tr>
<tr>
<td>RIDERSHIP</td>
<td>+1,000</td>
<td>+3,400</td>
<td>+10,100</td>
</tr>
<tr>
<td>CAPITAL COST</td>
<td>$261 M</td>
<td>$455 M</td>
<td>$273 M</td>
</tr>
</tbody>
</table>
Study Findings

- **Gating**
 - Provides the highest benefit for the least cost
 - Provides an equitable distribution of safety improvements along the busway

- **Grade separations of major arterial roadways**
 - Good safety improvement but financially infeasible to spread safety benefits across the entire corridor
 - Did not achieve the hoped-for benefit in time savings

- **Effect on roadway cross traffic travel times**
 - Ranges from minimal to improved
 - Further study and coordination with LADOT ongoing
About Gating

- Gates approved as a traffic control device
- Same as LRT gates
- Regulatory approval may be required for BRT
- Discussion with regulatory agencies to occur
- Each gated intersection is about 100th the cost of a grade separation structure
Recommended Alternative

- Grade separation Sepulveda – Van Nuys
- Four quadrant gating all other intersections
- Closure of one minor street
- Bike/pedestrian path grade separation of Sepulveda and Van Nuys
Recommended Alternative

<table>
<thead>
<tr>
<th>Segment</th>
<th>Performance Metrics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>East-West Segment (North Hollywood to Canoga)</td>
<td>-12 min</td>
<td>$273 M</td>
</tr>
<tr>
<td>North-South Segment (Canoga to Chatsworth)</td>
<td>-3 min</td>
<td>$10 M</td>
</tr>
<tr>
<td>Entire Corridor (North Hollywood to Chatsworth)</td>
<td>-16 min</td>
<td>$283 M</td>
</tr>
</tbody>
</table>
Recommendation

Board **action** to consider:

- APPROVING the findings and recommendation resulting from the Orange Line Bus Rapid Transit Improvements Technical Study; and

- APPROVING advancing Orange Line Bus Rapid Transit Improvements into the public engagement, environmental review and engineering design concurrent processes.