<table>
<thead>
<tr>
<th>Goal</th>
<th>Objectives</th>
<th>Initial Screening Criteria</th>
<th>Final Screening Criteria (additional considerations)</th>
</tr>
</thead>
</table>
| the fabric of the local communities, to be developed in accordance with local plans and to minimize effects on the environment | occupancy vehicle
- Reduce Vehicle Miles Traveled (VMT) within corridor
- Reduce growth in traffic congestion and improve air quality | ➢ Land use adjacencies | ➢ and physical resources
- Potential for reductions in PM$_{10}$, NO_x, and SO$_x$ emissions |
| 5 Meet the Needs of the Transit Dependent | ➢ Maintain or enhance transit services to the transit dependent
- Provide affordable access to education, employment and health resources in the county
- Provide outreach and communications to transit dependent populations within the corridor | ➢ Supports transit dependent populations (1/4 mile of stations)
- Zero car households
- Public transit dependent
- Low-income households
- Age 18 and under, and 65 plus | ➢ Evaluation of potential disproportionate effects and risk to environmental justice populations related to construction activities |
| 6 Respond to Community needs and support | ➢ Involve community in a meaningful and productive planning process
- Maximize the opportunities for community and resident input
- Build community and political support through effective communication and integration with local and regional plans | ➢ Public Input (based on PSA zones and early scoping meeting comments) | ➢ Public Input (based on public workshop and comments) |
2.2 Screened Alternatives (Alternatives 1-5)

The screening process included the preliminary screening of all the conceptual alternatives. An initial evaluation of these alternatives resulted in a refined 17 alternatives, the alternatives identified for initial screening. The 17 alternatives identified for initial screening were analyzed in a detailed process against all the project goals and objectives. The criteria, which are linked to each overall goal, help identify which alternatives perform well in certain aspects as opposed to others. This trade off analysis is helpful in comparing not only quantitative totals, but qualitative socio-economic characteristics as well.

More detail of the results of the initial screening can be found in the *Eastside Transit Corridor Phase 2 Initial Screening of Alternatives Report*, April 2008. A total of five alternatives were identified that most fulfill the goals and objectives of the Eastside Transit Corridor Phase 2 Project.

Table 2-3 provides a detailed look at the screening process and the scores that were given to each alternative, based on specific criteria. A further screening of the alternatives through this analysis has resulted in the refinement of the five promising alternatives, and Table 2-3 is a summary of the scores and comments received for these recommended alternatives. The following five refined alternatives, which have undergone final screening, are described in greater detail in section 2.3:

- Final Alternative 1 – SR-60 LRT
- Final Alternative 2 – SR-60 Busway
- Final Alternative 3 – Beverly LRT
- Final Alternative 4 – Whittier LRT
- Final Alternative 5 – Washington LRT

2.3 Refinement of Alternatives

This section discusses the refinement of alternatives based upon considerations that were identified in the initial screening of alternatives. This section presents information on the engineering and urban design considerations factored into the refinement of alternatives.
Table 2-3 Ranking of Screened Alternatives

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Goal 1 Improve Mobility, Accessibility and Connectivity</th>
<th>Goal 2 Support Local Land Use Objectives</th>
<th>Goal 3 Cost Effectiveness and Financial Feasibility</th>
<th>Goal 4 Plan for Projected Growth in a Sustainable Manner</th>
<th>Goal 5 Meet the Needs of the Transit Dependent</th>
<th>Goal 6 Respond to Community Needs and Support</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Pomona Blvd - SR-60 to I-605 | | | | | | | * Potential to serve northern tier cities
* Intercept of SR-60 traffic; Extensive aerial structure; No walkable service
* Carry forward for detailed analysis - Refine stations & feeders |
| Pomona Blvd - SR-60 Busway to I-605 | | | | | | | * Benefits of Alt. 2 with flexibility of rubber tired feeder service
* Potential for combined HOV/bus lanes on SR-60; Forced transfer at Phase 1 terminus
* Carry forward for detailed analysis |
| SR-60 - Garfield - Beverly LRT - Whittier Greenway to Mar Vista | | | | | | | * Direct route to central cities & potential end of line TOD
* Impact to traffic capacity; potential for parking loss
* Potential impact to widens & at-grade alignment may not be feasible
* Carry forward for detailed analysis - Consider aerial or mixed flow segments |
| Pomona Blvd - SR-60 Garfield - Whittier Aerial to Whittier/Philadelphia | | | | | | | * Grade separation lowers travel time; Reduced impact on traffic & parking
* Higher cost than other Whittier alternatives; Aerial structure results in visual impact
* Carry forward for detailed analysis - Consider aerial or mixed flow segments |
| Pomona Blvd - SR-60 Garfield Aerial - Washington LRT to Whittier/Washington | | | | | | | * Long run time offset by higher ridership; Lower cost due to at-grade configuration
* Potential traffic capacity impacts; Potential impact to adjacent land use
* Carry forward for detailed analysis - Consider aerial segments |

High ☢️ Medium ☥️ Low ☥️
2.3.1 **Alternative 1 – SR-60 LRT**

The SR-60 LRT alignment begins as an eastward extension of the Phase 1 project across S. Atlantic Blvd. then transitions to an aerial configuration using a combination of retained cut, retained fill and aerial trackway on columns to follow the south side of SR-60, largely within the existing right-of-way, east to the Crossroads Pwky. interchange east of I-605.

The screening analysis of this route alternative indicated the following key issues need to be considered in refinement of the alternative:

- Maximize potential for transit oriented development (TOD) at selected station sites;
- Provide park and ride and feeder bus connectivity; and
- Develop initial description of alignment to conform to freeway geometric constraints.

The following narrative addresses each principal segment, the design considerations, and the rationale for the recommended configuration.

Pomona Blvd. and Via Campo

The Eastside Extension Phase 1 project terminates at-grade in the median of Pomona Blvd. immediately west of Atlantic Blvd. As such, the simplest design solution is to extend the line at-grade across Atlantic Blvd. and follow Pomona Blvd. to the SR-60 Freeway. Accordingly, the LRT trackway continues east across S. Atlantic Blvd. in the median of Pomona Blvd. Slightly west of S. Hillview Ave., the alignment transitions to aerial structure and crosses over S. Sadler Ave., swinging to the south to follow the south side of the Pomona Freeway (SR-60) in a combination of retained cut and aerial with columns as required to fit between the freeway and Via Campo to the south. Figure 2-3 provides a prototypical cross section for a retained cut section along the edge of the freeway; Figure 2-4 shows the aerial trackway supported on columns as it would clear cross streets and ramps.

The alignment continues to Garfield Ave. where it passes through an aerial station located between Garfield Ave. and Wilcox Ave. The station would be located between SR-60 and Via Campo. There is an opportunity to provide a parking deck above existing surface parking at the commercial sites along the south side of Via Campo. Located east of and away from the congestion present at Atlantic Blvd. where the Eastside Extension Phase 1 terminal station is located, the site has excellent access from the SR-60 Freeway ramps to the east, making this station a good intercept point for freeway traffic. The site also has excellent roadway access from Garfield Ave. to the west as well as Wilcox Ave. to the east.
Figure 2-3 Typical Cross Section – Retained Cut along SR-60 Freeway
Figure 2-4 Typical Cross Section - Aerial Configuration Parallel to SR-60 Freeway
Pedestrian access would be provided by a bridge across Via Campo to make a convenient connection between the station, parking and commercial uses. Vertical circulation could potentially be integrated into a parking structure and/or additional commercial development. Fixed route buses serving the station include the M30 (on Garfield) and M70 (on Via Campo and Wilcox Ave.).

N. Vail Ave. to Montebello Town Center Dr.

East of N. Vail Ave., the trackway continues east on a high aerial structure, clearing over the merge of the eastbound on-ramp from Vail Ave. Further to the east, the gradient is reduced so that the trackway converges with the freeway grade, ending up on retained fill climbing towards the crest – use of retained fill minimizes the need to excavate over the waste disposal site located between Vail Ave. and Paramount Blvd. (this site is designated as a “Superfund” location and has been capped and is being treated to address toxics issues). As the alignment would be close to freeway grade, it would pass beneath the Greenwood Ave. bridge, climbing up the hill at a gradient of about 2.5%.

Approaching the Paramount Blvd. interchange the trackway remains high, clearing over the eastbound off-ramp, the cross street bridge and eastbound on-ramp (overhead utility lines will need to be relocated to provide vertical clearance). The trackway profile dips east of the interchange; the horizontal alignment runs parallel to the freeway immediately north of Town Center Dr. A station is provided at the approximate location of the existing bus stop along Town Center Dr. There is potential to develop parking and new mixed-use development interfacing to the station over surface parking lots in the northwest corner of the mall and at the Kaiser Medical site. There is also an opportunity to provide a bridge connection to a vertical circulation element across Town Center Dr. which could be integrated into a parking structure or TOD. Figures 2-5 and 2-6 show a before-after urban design concept from the vantage point of Town Center Dr., including a pedestrian bridge to higher-intensity uses constructed over existing parking areas. This station would provide a good interface to the numerous Metro and Montebello Bus Lines that presently connect at the existing stop along Town Center Dr. (M20, M70, M341, M343, FT269, 68 & 287). Although the station is not located on an arterial, it sits between two interchanges that connect with Montebello Blvd., Paramount Blvd. and San Gabriel Blvd. Therefore, traffic could be attracted from a broad market area surrounding the site.

Montebello Town Center to San Gabriel River

The alignment continues east, dipping at a steep grade approaching 4% but remaining above the Montebello Blvd. freeway ramps (potentially requiring relocation of overhead power lines). The alignment clears over the San Gabriel Blvd. interchange bridge and then dips down to approximate freeway grade, crossing the Rio Hondo floodplain immediately parallel to and south of the freeway mainline. East of the Rio Hondo, the alignment follows the freeway closely; rising slightly and swinging south slightly to clear over the Rosemead Blvd. interchange ramps and bridge.
Figure 2-5 Urban Design Concept – BEFORE, Town Center Dr., Montebello
Figure 2-6 Urban Design Concept – AFTER, Aerial Station at Town Center Dr., Montebello
The alignment follows the freeway closely east of Rosemead Blvd., again rising slightly and swinging to the south at Santa Anita Ave., entering an elevated platform station immediately east of the interchange bridge. This station would serve the vacant development parcel south of SR-60 and east of Santa Anita Ave. identified by the City of South El Monte. The station would also be within walking distance of the Whittier Narrows Recreation Area, which is a major regional park. Santa Anita Ave. connects via Durfee Ave. to Pico Rivera to the south, and provides direct access to the heart of South El Monte located to the north. An existing pedestrian bridge located at Lexham Ave. east of the site provides an alternative pedestrian access to portions of South El Monte located north of the freeway. The site is served by the FT269 bus route, which provides access to the bus hub at the El Monte Busway terminus. Figures 2-7 and 2-8 show the before/after urban design concept from the viewpoint of the Santa Anita Ave. eastbound ramps intersection.

East of the platform the alignment rises to clear the pedestrian bridge. The trackway sits between the edge of the freeway and the existing sound wall, with the westbound track overhanging the freeway shoulder. Figures 2-9 and 2-10 show the before/after urban design concept from the viewpoint of the pedestrian bridge east of Santa Anita Ave.

The alignment continues east along the south edge of the freeway, clearing over the Peck Rd. ramps and cross street to enter an aerial station immediately east of Peck Rd. The station would be developed in the triangle between Peck Rd., the freeway and the San Gabriel River. This station is situated to interface with bus routes that operate north into South El Monte along Durfee Ave. as well as south into Whittier via Workman Mill Rd. About ½ mile to the south, Peck Rd. connects to an interchange on I-605 so a station at this location could also intercept traffic from communities south via that freeway. The site is served by the 270 bus which provides access north to Monrovia and south to Whittier, Santa Fe Springs and Norwalk. Peck Rd. also provides a direct route for a shuttle bus connection to Rio Hondo College, which is located just beyond the I-605 Freeway.

East of the Peck Rd. station, the alignment dips slightly approaching the river, crossing the river on long-span aerial structure immediately south of the existing freeway bridge.

San Gabriel River to Crossroads Pkwy.

East of the San Gabriel River, the alignment swings wide to the south, crossing over the eastbound connector ramp to I-605 then reversing direction and rising to clear the main line of SR-60 at a skewed angle. Farther east, the alignment swings back over the westbound I-605 connector ramp, reversing direction to follow the freeway along the north edge. The trackway sits between the edge of the freeway and Crossroads Pkwy. with the eastbound track overhanging the freeway shoulder. The alignment dips nearly to grade, passing beneath the Crossroads Pkwy. bridge and continuing in to a station on embankment just north of the freeway between the Crossroads bridge and ramps.