I-710 Freight Corridor & Zero-Emission Trucks: Technologies, Opportunities, & Barriers

Clean Transportation Technologies and Solutions

Bill Van Amburg
Senior Vice President

Michael Ippoliti
Director, Clean Transportation Solutions

June 2011
Question

• Can Zero Emission Trucks be commercially available if a Zero Emission Freight Corridor is built?
Approach

- Research
- Confidential Delphi Interviews
- CALSTART Expertise
- Examination of Technology Options
- Identification of Barriers
- Define Opportunities
Findings

Trucks CAN Deliver Zero Emissions Goods Movement in the I-710 Corridor, within the time frame of the project

• Several Options for Zero Emissions
 – Hybrid with Dual-Mode Operation (ZEV Mode)
 – Range Extender EV (Fuel Cell or Turbine w/ZEV mode)
 – Full EV (with fast charging or infrastructure power)
 – Road-Connected Power

• Additional Options for Near-Zero Emissions
 – Alt Fuel Hybrids
 – Zero NOx dedicated fuel engines (CNG, RNG, H2 ICE)
 – Range Extender EV (turbine)
Examples: Dual-Mode Hybrids (w/ Zero Emissions Mode)

Meritor – Navistar
• Electric drive at lower speeds (up to 48 mph), blended mode at higher speeds
• Can greatly reduce fuel use, cut idle emissions, provide partial zero emissions

Eaton
• Electric drive for short range, low speeds (prototype)

Transit (buses)
• Long Beach Transit
• King County Metro
Examples: Series Electric/Hybrid – Range Extender

Artisan–Parker
• Electric drive system with turbine range extender (with ZEV mode)
• Much development in turbines, focus on NG

Vision Industries
• Electric with fuel cell range extender (zero-emissions)
Examples: Full Battery Electric

Balqon
- Drayage trucks

Proterra
- All-electric bus operating with Foothill transit
- Reduced battery pack size augmented with fast charge
Examples: Road-Connected Power

- Well known in transit industry (electric trolley-bus)
- Used widely in mining with extremely heavy equipment
- Now beginning testing in Europe (Siemens) for heavy-haul trucks
- Other tests looking at in-road power alternative

Siemens eHighways Concept
Opportunities

• Multiple technologies available
• Variations in feasibility
 – Dual Mode Hybrid Vehicles have “multiple” uses (not just corridor)
 – Fuel Cells and Full-EV require Infrastructure
• Pathway Trucks (near zero emissions)
 – Can test and validate a production “pathway” to reach zero in succeeding model generations
Barriers

- **Design Factors**
 - Durability
 - Weight/Volume
 - User Needs
 - Development Resources

- **Infrastructure**
 - Fuels
 - Corridor Design
 - Costs

- **Costs**
 - Development Cost
 - Materials/Component Cost
 - Vehicle Cost

- **Business Case**
 - Corridor Economics
 - Market Demand & Volume Potential
 - Regulations & Legislation
 - Fuel (Oil) Prices
Conclusions

• Zero Emission Trucks are Technically feasible within the timeframe of the project

• Barriers need to be addressed (Esp. Business Case)

• Pathway Trucks (Near-Zero emission) can help validate zero emission technology
Clean Transportation Solutions℠
Advanced Transportation Technologies℠

www.calstart.org

For info contact:

Bill Van Amburg
Michael Ippoliti
(626) 744-5600
bvananamburg@calstart.org
mippoliti@calstart.org