Zero Emission Vehicles:
Emerging Technologies for Trucks and Goods Movement

Clean Transportation
Technologies and Solutions

Bill Van Amburg
Senior Vice President

I 710 Project Comm
January 28, 2010
Agenda

• CALSTART Background
• Status of Advanced Technology for Trucks
• National HTUF Process Commercializing Hybrids and High Efficiency Trucks
• Implications for Zero Emission Vehicles in the 710 Corridor
CALSTART

CALSTART is a unique California-based national, non-profit, member-supported organization. Founded in 1992 as a public-private partnership to help launch and grow a clean transportation industry.

Mission: via programs and services, supporting and expanding the growth of a clean transportation technologies industry that will:

• Create high-quality jobs;
• Clean the air;
• Reduce dependence on foreign oil; and
• Reduce global warming emissions
CALSTART Has Broad Industry/Public Sector Support (partial list)
CALSTART: A Strategic Broker for Advanced Transportation

2010
130+ Worldwide Participant Network

3 Offices in US

Four focus areas:
Tech Commercialization
Fleet, Port Consulting
Industry Services
Policy Development

National and International in Project Areas

Copyright CALSTART 2010
Truck World is Changing

• Significant improvement in emissions – but big increase in cost
 – Idle reduction an additional pressure

• Large push to improve fuel efficiency because of fuel price shocks (but without increasing emissions)

• Carbon (global warming) emissions of rising importance because of large fuel use in trucks
 – One efficient truck can cut 24X more fuel than a car

• Ports and California driving force for rapidly upgrading trucks (on emissions but not efficiency)

• Has led to a blossoming of new lower-emitting, higher-efficiency technology and fuels – some entering early production NOW
Hybrid Vehicles – A First Step

• A hybrid uses more than one source of stored energy to drive and do work

• Can add significant efficiency to vehicle performance
 – Very good in driving cycles with stop and go, delivery, high idling times

• Several hybrid versions
 – hybrid electric (batteries)
 – hybrid hydraulic (hydraulic pressure accumulators)
 – Plug-in hybrids have larger batteries, can partially recharge off electric grid
Industry Transformation: Hybrid Trucks Now Entering Market

10 years behind cars but industry is real, momentum growing – 8 years ago there were no hybrid trucks before CALSTART’s HTUF process

Development
- Test prototypes and systems

Pre-Production
- Field pilot assessments (10-50 vehicles)

Production Intent
- Assembly line builds up to 100+

Early Production
- Initial commercial volumes – still high incremental cost

Tools:
- R&D Support
- Purchase Incentives
- Pre-Production Deployment Support (HTUF)
Regional Heavy and Line Haul Advanced Trucks

- Kenworth, Peterbilt, Navistar and Freightliner all have Class 8 regional haul hybrid tractors
 - All developing next generation advanced Class 8 – including electric and hybrid configurations
- Mack showcased advanced hybrid line haul Class 8 (full 80,000 lb GVWR); next stages add more electrification; Peterbilt has several in demonstration
Wal-Mart Class 8 Demo

- ArvinMeritor – Navistar deliver unique dual-mode hybrid design for testing
- Electric drive at lower speeds (up to 48 mph), blended mode at higher speeds
- Can greatly reduce fuel use, cut idle and give zero emission at ports, urban driving
- Wal-Mart testing this truck and several Peterbilt-Eaton trucks in line-haul and regional heavy haul applications
- Wal-Mart committed to doubling its fleet fuel efficiency by 2015
All Electric Drive Trucks Emerging

- Oshkosh HEMMT military heavy transport and support truck
 - Series hybrid electric drive system with ultracap energy buffer
- Capacity “PHETT”
 - Plug-in, series hybrid design
- Balqon all-electric port trucks
 - Up to 40-60 miles range
- Freightliner Custom Chassis and Enova electric parcel truck (in testing)
- Smith “Newton” electric truck (in early production)
- Navistar/Modec electric truck (in early production Q1 2010)
All Electric Heavy Transit Buses
(comparable systems to heavy trucks)

- LA Metro and ISE Corporation all-electric bus (Zero-emission Bus) proposed
 - Supported by the California Air Resources Board (CARB), the South Coast Air Quality Management District (SCAQMD) and LACMTA
 - 45-foot bus expected range - 150 miles before recharging
- Foothill Transit Plans Revenue Operations for all-electric, rapid-recharge bus
 - 30 mile range
 - On-route charging
 - Composite bus, all conventional subsystems off-the-shelf
Expanding Choice of Natural Gas Engines, Trucks

- CARB/EPA certified Westport’s High Pressure Direct Injection (HPDI) NG technology for Cummins heavy-duty engine
- Kenworth expands to LNG vehicles with T800 LBG trucks
- Freightliner producing CNG version of its Business Class M2
- Mack brings natural gas refuse truck back to market
Renewable Natural Gas – Lowest Carbon Fuel

- Trucks driving on natural gas produced from dairy manure operating in San Joaquin Valley
- Process produces and refines manure biogas to “biomethane” – essentially renewable (green) natural gas
- Very low in overall carbon emissions
- Natural gas-hybrids becoming possible

Dairy partners – Hilarides Dairy, Hilmar Cheese
Hybrid Truck
Users Forum (HTUF)

• User-driven process to commercialize medium- and heavy-duty hybrid trucks

• Joint CALSTART-U.S. Army program (RDECOM-TARDEC-NAC)
 – Also supported by Hewlett Foundation, support from DOE, DOT

• HTUF focuses on commercializing hybrid trucks with dual-use benefits
 – Speed commercialization and reduce overall costs by creating common fleet requirements, joint purchase commitments, increasing volumes

Copyright CALSTART 2010
HTUF Forums & WGs: A Market Development & Transformation Process

• HTUF Forums are North America’s primary hybrid and high efficiency truck industry meetings

• The HTUF process has sped market introduction by 2-5 years (5 years according to fleets)

• The Forums uniquely bring together the full range of key stakeholders in one place:
 – fleet vehicle users (commercial and military)
 – vehicle manufacturers
 – suppliers and technology developers
 – regulators
 – researchers
 – NGOs

• The Forums provide the clearest window on industry status and reality; technology developments; field-test data and real-world performance evaluations; hands-on experience via ride-and-drives; and developing the action agenda for the industry.
Hybrid, High Efficiency Low Emission Trucks and Buses:

- REAL; AND IN FIRST PRODUCTION
- EXPANDING IN TYPE AND APPLICATION
- PURCHASE INCENTIVES EMERGING
- NEXT GENERATION CAPABILITIES ARE BUILDING ON FOUNDATION OF HYBRID, NATURAL GAS, MILITARY AND TRANSIT CAPABILITIES
- ULTRA-LOW CARBON AND NEAR/ZERO EMISSION MEDIUM- AND HEAVY-DUTY TRUCKS TECHNICALLY ACHIEVABLE
- CHALLENGE IS DEVELOPING MARKET
Moving Freight with Zero Emissions

Metro has reached out to CALSTART and asked it to examine the commercial viability of zero-emission freight movement – and how to launch a process to commercialize zero-emission freight movement vehicles and infrastructure.

The possible structure: a long-term (multi-year) public-private program involving partners and stakeholders serving, using and living along the I-710 corridor.

Goal: develop, validate and commercialize market-sustainable, zero-emission goods movement vehicles - and supporting infrastructure – to service the I-710 freight corridor (and additional uses).
Tech Commercialization Processes

Structure Used for First Gen Electric Vehicles

Utilities

Fuel Providers

Government

Air Needs

Infrastructure

Construction, Design

Manufacturers

Product Viability

Zero-Emission Vehicles and Infrastructure
Proposed Market Transformation Process

Builds on Proven Structure, Industry Relationships

710 Stakeholders

- Government
 - Regional Air Needs
- Infrastructure
 - Construction, Design
- Manufacturers
 - Product Viability
- Fleet Users
 - Market Pull

CALSTART

Coordinate process

Impacts

Zero-Emission Freightway Vehicles and Infrastructure
At Metro’s request and working with Metro, CALSTART has outlined the following process and possible stages that could be the basis of market and technology commercialization, and could be followed and engaged at the appropriate time:

Stage 1 Outline core technical and market barriers/opportunities and share findings with partners on project
- I-710 Project in formative stages – first 1-2 years
- Assemble partners and building relationships around the concepts and technical challenges
- Proof of capability demonstrations

Stage 2 Develop user groups to identify requirements for the vehicle. Validate capabilities and requirements with OEMs and technology suppliers. Pre-production deployments.
- I-710 Project moving to planning – following 2 years
- User groups and monitoring groups.
- Funding partners
Stage 3 Prototypes from several OEMs put into test use for data collection, analysis and data sharing through user group forums

- Simultaneous development of the economic sustainability requirements and business case confirmation, to ensure market viability

- I-710 Project in planning and design stages, moving to construction preparation – following 2 years

- Process of rapid, iterative production design improvement, sharing results. Development of the business case through similar user group model.

Stage 4 Deploy pre-production vehicles based on previous improvement steps. Validate vehicles in real-world use. Phase in new capabilities with freightway.

- Work with public partners, governments, and regulators to implement market sustainability tools.

- I-710 Project construction underway, to completion – following 5+ years

- Phased-in production of vehicles meeting Freightway goals as 710 build-out can support; inducements for early actions.
Summary

• Advanced low-emitting, high-efficiency technology now emerging in trucks and in early production

• Technology shows real pathways to achieve near-zero and zero-emission operations

• Targeted, fast-track market transformation processes have been proven and demonstrated

• Such processes can be used to drive zero emission outcomes for the 710 corridor
Clean Transportation Technologies and Solutions℠

www.calstart.org

For info contact:

Bill Van Amburg
(626) 744-5600
bvanamburg@calstart.org
Hybrid Tractors Emerging for Regional Heavy Applications

- Kenworth unveils Class 7/8 hybrid tractor: 54,500 lbs GCVW
- Peterbilt has similar model – also continuing to test larger Class 8 heavy-duty OTR tractor
- Navistar unveils Class 7/8 hybrid tractor targeting beverage trailer applications
- Freightliner announces will pilot build a hybrid tractor Dec 08

Left: Freightliner Class 7/8 tractor pilot; right, Peterbilt Class 7/8 tractor
Above: Kenworth Class 8 tractor; Below: Navistar Class 7/8 tractor
Hydraulic Hybrids Coming of Age

- Several pre-production and near production models shown: Eaton, Bosch Rexroth, Parker
- Parallel and Series architecture
- FCCC – Parker series parcel strip chassis showed impressive integration, potential fuel savings