Chapter 4 California Environmental Quality Act Evaluation

4.1 Determining Significance Under CEQA

The proposed project is a joint project by the California Department of Transportation (Caltrans) and the Federal Highway Administration (FHWA) and is subject to state and federal environmental review requirements. Project documentation, therefore, has been prepared in compliance with both the California Environmental Quality Act (CEQA) and the National Environmental Policy Act (NEPA). FHWA’s responsibility for environmental review, consultation, and any other action required in accordance with NEPA and other applicable federal laws for this project is being, or has been, carried-out by Caltrans under its assumption of responsibility pursuant to 23 United States Code (USC) 327. Caltrans is the lead agency under CEQA and NEPA.

One of the primary differences between NEPA and CEQA is the way significance is determined. Under NEPA, significance is used to determine whether an EIS, or some lower level of documentation, will be required. NEPA requires that an EIS be prepared when the proposed federal action (project) as a whole has the potential to “significantly affect the quality of the human environment.” The determination of significance is based on context and intensity. Some impacts determined to be significant under CEQA may not be of sufficient magnitude to be determined significant under NEPA. Under NEPA, once a decision is made regarding the need for an EIS, it is the magnitude of the impact that is evaluated and no judgment of its individual significance is deemed important for the text. NEPA does not require that a determination of significant impacts be stated in the environmental documents.

CEQA, on the other hand, does require Caltrans to identify each “significant effect on the environment” resulting from the project and ways to mitigate each significant effect. If the project may have a significant effect on any environmental resource, then an EIR must be prepared. Each and every significant effect on the environment must be disclosed in the EIR and mitigated if feasible. In addition, the CEQA Guidelines list a number of mandatory findings of significance, which also require the preparation of an EIR. There are no types of actions under NEPA that parallel the findings of mandatory significance of CEQA. This chapter discusses the effects of this project and CEQA significance.
4.2 Discussion of Significance of Impacts

In Chapter 3 of the Final EIR/FONSI for the I-5 HOV/Truck Lanes Project, the significance of the potential impacts of the project based on the requirements of CEQA was discussed. The proposed scope change from HOV to HOT lanes does not change the findings of significance under CEQA. The unavoidable significant impacts of the project remain the same. Mandatory findings under CEQA are still the same as were discussed in Chapter 3 of the Final EIR/FONSI.

4.3 Mitigation Measures for Significant Impacts Under CEQA

No additional measures have been identified for the proposed HOT Lane project.

4.4 Climate Change

Climate change refers to long-term changes in temperature, precipitation, wind patterns, and other elements of the earth's climate system. An ever-increasing body of scientific research attributes these climatological changes to greenhouse gas (GHG) emissions, particularly those generated from the production and use of fossil fuels.

While climate change has been a concern for several decades, the establishment of the Intergovernmental Panel on Climate Change (IPCC) by the United Nations and World Meteorological Organization in 1988, has led to increased efforts devoted to GHG emissions reduction and climate change research and policy. These efforts are primarily concerned with the emissions of GHGs generated by human activity including carbon dioxide (CO$_2$), methane (CH$_4$), nitrous oxide (N$_2$O), tetrafluoromethane, hexafluoroethane, sulfur hexafluoride (SF$_6$), HFC-23 (fluoroform), HFC-134a (s, s, s, 2-tetrafluoroethane), and HFC-152a (difluoroethane).

In the U.S., the main source of GHG emissions is electricity generation, followed by transportation. In California, however, transportation sources (including passenger cars, light duty trucks, other trucks, buses, and motorcycles make up the largest source (second to electricity generation) of GHG emitting sources. The dominant GHG emitted is CO$_2$, mostly from fossil fuel combustion.

There are typically two terms used when discussing the impacts of climate change. "Greenhouse Gas Mitigation" is a term for reducing GHG emissions in order to reduce or "mitigate" the impacts of climate change. “Adaptation,” refers to the effort
of planning for and adapting to impacts resulting from climate change (such as adjusting transportation design standards to withstand more intense storms and higher sea levels)\(^1\).

There are four primary strategies for reducing GHG emissions from transportation sources: 1) improving the transportation system and operational efficiencies, 2) reducing the growth of vehicle miles traveled (VMT), 3) transitioning to lower GHG emitting fuels, and 4) improving vehicle technologies. To be most effective all four strategies should be pursued cooperatively. The following Regulatory Setting section outlines state and federal efforts to comprehensively reduce GHG emissions from transportation sources.

4.4.1 Regulatory Setting

State

With the passage of several pieces of legislation including State Senate and Assembly bills and Executive Orders, California launched an innovative and pro-active approach to dealing with GHG emissions and climate change.

Assembly Bill 1493 (AB 1493), Pavley. *Vehicular Emissions: Greenhouse Gases, 2002*: requires the California Air Resources Board (ARB) to develop and implement regulations to reduce automobile and light truck GHG emissions. These stricter emissions standards were designed to apply to automobiles and light trucks beginning with the 2009-model year. In June 2009, the United States Environmental Protection Agency (U.S. EPA) Administrator granted a Clean Air Act waiver of preemption to California. This waiver allowed California to implement its own GHG emission standards for motor vehicles beginning with model year 2009. California agencies will be working with federal agencies to conduct joint rulemaking to reduce GHG emissions for passenger cars model years 2017-2025.

Executive Order S-3-05 (EO): (signed on June 1, 2005, by former Governor Arnold Schwarzenegger) the goal of this EO is to reduce California’s GHG emissions to: 1) year 2000 levels by 2010, 2) year 1990 levels by the 2020, and 3) 80 percent below the year 1990 levels by the year 2050. In 2006, this goal was further reinforced with the passage of Assembly Bill 32.

\(^1\) http://climatechange.transportation.org/ghg_mitigation/
AB 32, the Global Warming Solutions Act of 2006 Núñez and Pavley: AB 32 sets the same overall GHG emissions reduction goals as outlined in EO S-3-05, while further mandating that ARB create a scoping plan, (which includes market mechanisms) and implement rules to achieve “real, quantifiable, cost-effective reductions of greenhouse gases.”

Executive Order S-20-06 (signed on October 18, 2006 by former Governor Arnold Schwarzenegger) further directs state agencies to begin implementing AB 32, including the recommendations made by California’s Climate Action Team.

Executive Order S-01-07: (signed on January 18, 2007 by former Arnold Governor Schwarzenegger) set forth the low carbon fuel standard for California. Under this EO, the carbon intensity of California’s transportation fuels is to be reduced by at least ten percent by the year 2020.

Senate Bill 97 (SB 97) Chapter 185, 2007: required the Governor's Office of Planning and Research (OPR) to develop recommended amendments to the California Environmental Quality Act (CEQA) Guidelines for addressing GHG emissions. The amendments became effective on March 18, 2010.

Caltrans Director’s Policy 30 (DP-30) Climate Change (approved June 22, 2012): is intended to establish a Department policy that will ensure coordinated efforts to incorporate climate change into Departmental decisions and activities. This policy contributes to Caltrans’s stewardship goal to preserve and enhance California’s resources and assets.

Federal

Although climate change and GHG reduction is a concern at the federal level; currently there are no regulations or legislation that have been enacted specifically addressing GHG emissions reductions and climate change at the project level. Neither the United States Environmental Protection Agency (U.S. EPA) nor the Federal Highway Administration (FHWA) has promulgated explicit guidance or methodology to conduct project-level GHG analysis. As stated on FHWA’s climate change website (http://www.fhwa.dot.gov/hep/climate/index.htm), climate change considerations should be integrated throughout the transportation decision-making process—from planning through project development and delivery. Addressing climate change mitigation and adaptation up front in the planning process will facilitate decision-making and improve efficiency at the program level, and will inform the
analysis and stewardship needs of project level decision-making. Climate change considerations can easily be integrated into many planning factors, such as supporting economic vitality and global efficiency, increasing safety and mobility, enhancing the environment, promoting energy conservation, and improving the quality of life.

The four strategies set forth by FHWA to lessen climate change impacts do correlate with efforts that the state has undertaken and is undertaking to deal with transportation and climate change; the strategies include improved transportation system efficiency, cleaner fuels, cleaner vehicles, and a reduction in the growth of vehicle hours travelled.

Climate change and its associated effects are being addressed through various efforts at the federal level to improve fuel economy and energy efficiency, such as the “National Clean Car Program” and EO 13514 - Federal Leadership in Environmental, Energy and Economic Performance.

Executive Order 13514 is focused on reducing greenhouse gases internally in federal agency missions, programs and operations, but also direct federal agencies to participate in the Interagency Climate Change Adaptation Task Force, which is engaged in developing a national strategy for adaptation to climate change.

On April 2, 2007, in Massachusetts v. EPA, 549 U.S. 497 (2007), the Supreme Court found that greenhouse gases are air pollutants covered by the Clean Air Act and that the U.S. EPA has the authority to regulate GHG. The Court held that the U.S. EPA Administrator must determine whether or not emissions of greenhouse gases from new motor vehicles cause or contribute to air pollution which may reasonably be anticipated to endanger public health or welfare, or whether the science is too uncertain to make a reasoned decision.

On December 7, 2009, the U.S. EPA Administrator signed two distinct findings regarding greenhouse gases under section 202(a) of the Clean Air Act:

- **Endangerment Finding:** The Administrator found that the current and projected concentrations of the six key well-mixed greenhouse gases—carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆)—in the atmosphere threaten the public health and welfare of current and future generations.
- **Cause or Contribute Finding:** The Administrator found that the combined emissions of these well-mixed greenhouse gases from new motor vehicles and new
motor vehicle engines contribute to the GHG pollution which threatens public health and welfare.

Although these findings did not themselves impose any requirements on industry or other entities, this action was a prerequisite to finalizing the U.S. EPA’s *Proposed Greenhouse Gas Emission Standards for Light-Duty Vehicles*, which was published on September 15, 2009\(^2\). On May 7, 2010 the final *Light-Duty Vehicle Greenhouse Gas Emissions Standards and Corporate Average Fuel Economy Standards* was published in the Federal Register.

U.S. EPA and the National Highway Traffic Safety Administration (NHTSA) are taking coordinated steps to enable the production of a new generation of clean vehicles with reduced GHG emissions and improved fuel efficiency from on-road vehicles and engines. These next steps include developing the first-ever GHG regulations for heavy-duty engines and vehicles, as well as additional light-duty vehicle GHG regulations. These steps were outlined by President Obama in a Presidential Memorandum on May 21, 2010.\(^3\)

The final combined USEPA and NHTSA standards that make up the first phase of this national program apply to passenger cars, light-duty trucks, and medium-duty passenger vehicles, covering model years 2012 through 2016. The standards require these vehicles to meet an estimated combined average emissions level of 250 grams of carbon dioxide per mile (the equivalent to 35.5 miles per gallon [MPG]) if the automobile industry were to meet this CO\(_2\) level solely through fuel economy improvements). Together, these standards will cut GHG emissions by an estimated 960 million metric tons and 1.8 billion barrels of oil over the lifetime of the vehicles sold under the program (model years 2012-2016).

On November 16, 2011, U.S. EPA and NHTSA issued their joint proposal to extend this national program of coordinated greenhouse gas and fuel economy standards to model years 2017 through 2025 passenger vehicles.

4.4.2 Project Analysis

An individual project does not generate enough GHG emissions to significantly influence global climate change. Rather, global climate change is a cumulative

\(^2\) http://www.epa.gov/oms/climate/regulations.htm#1-1

\(^3\) http://epa.gov/otaq/climate/regulations.htm
impact. This means that a project may contribute to a potential impact through its *incremental* change in emissions when combined with the contributions of all other sources of GHG. In assessing cumulative impacts, it must be determined if a project’s incremental effect is “cumulatively considerable” (CEQA Guidelines sections 15064(h)(1) and 15130). To make this determination the incremental impacts of the project must be compared with the effects of past, current, and probable future projects. To gather sufficient information on a global scale of all past, current, and future projects in order to make this determination is a difficult, if not impossible, task.

The AB 32 Scoping Plan mandated by AB 32 contains the main strategies California will use to reduce GHG emissions. As part of its supporting documentation for the Draft Scoping Plan, ARB released the GHG inventory for California (forecast last updated: October 28, 2010). As seen in Figure 4.1, the forecast is an estimate of the emissions expected to occur in the year 2020 if none of the foreseeable measures included in the Scoping Plan were implemented. The base year used for forecasting emissions is the average of statewide emissions in the GHG inventory for 2006, 2007, and 2008.

Caltrans and its parent agency, the Business, Transportation, and Housing Agency, have taken an active role in addressing GHG emission reduction and climate change. Recognizing that 98 percent of California’s GHG emissions are from the burning of fossil fuels and 40 percent of all human made GHG emissions are from transportation, Caltrans has created and is implementing the Climate Action Program at Caltrans that was published in December 2006.

4 This approach is supported by the AEP: *Recommendations by the Association of Environmental Professionals on How to Analyze GHG Emissions and Global Climate Change in CEQA Documents* (March 5, 2007), as well as the South Coast Air Quality Management District (Chapter 6: The CEQA Guide, April 2011) and the US Forest Service (Climate Change Considerations in Project Level NEPA Analysis, July 13, 2009).

5 Caltrans Climate Action Program is located at the following web address: http://www.dot.ca.gov/hq/tpp/offices/ogm/key_reports_files/State_Wide_Strategy/Caltrans_Climate_Action_Program.pdf
One of the main strategies in Caltrans’s Climate Action Program to reduce GHG emissions is to make California’s transportation system more efficient. The highest levels of carbon dioxide (CO₂) from mobile sources such as automobiles, occur at stop-and-go speeds (0-25 miles per hour) and speeds over 55 mph; the most severe emissions occur from 0-25 miles per hour (see Figure 4.2 below). To the extent that a project relieves congestion by enhancing operations and improving travel times in high congestion travel corridors GHG emissions, particularly CO₂, may be reduced.

Figure 4.2 Possible Effect of Traffic Operation Strategies in Reducing On-Road CO2 Emission

4.4.2.1 GHG Emissions Analysis

The analysis of impacts of the proposed HOT Lane project to air quality is based on the *Analysis for Greenhouse Gas and Other Pollutants* (Caltrans, January 2013).

Sources of operational GHG emissions are the same as those analyzed for criteria pollutant emissions and include GHG emissions from vehicles traveling along the project corridor. Project-related GHG emissions (No-Build and Build Alternative) were estimated using the emission factors for on-road mobile sources and VMTs along the project corridor. The following GHG emissions estimate is presented for the purpose of disclosing project-related emissions.

The project GHG emissions are evaluated for the following:

- The changes in the future GHG emissions along the project corridor compared to the CEQA baseline, i.e., emissions in 2010.
- The changes in GHG emissions for the Build Alternative along the project corridor compared with the No-Build scenario.

These comparisons provide disclosure of estimated changes in project emissions of GHG based on forecast traffic data. Note that GHG emissions are only useful for a comparison between Alternatives or between years. The numbers are not necessarily an accurate reflection of what the true GHG emissions will be because GHG emissions are dependent on other factors that are not part of the model such as the fuel mix and consumption, rate of acceleration, and the aerodynamics and efficiency of the vehicles. ARB’s EMFAC model emission rates are only for direct engine-out CO₂ emissions and do not account for a full fuel cycle. Fuel cycle emission rates can vary dramatically depending on the amount of additives like ethanol and the source of the fuel components.

Table 4.A and 4.B below summarizes daily operational GHG emissions that would occur from vehicular traffic within the project limits in existing, 2018, and 2035. The latest available emissions inventory, EMFAC2011, reflects the emissions benefits of the Air Resources Board’s (ARB) recent rulemakings including Pavley Clean Car Standards; and provides two different sets of emission factors with and without the Pavley Clean Car Standards. The emissions analyses for the GHG have thus been evaluated accordingly. The EMFAC2011 does not provide emission factors for methane or CH₄; and this analysis therefore does not provide conversion of methane emissions based on the global warming potential.
Table 4.A Existing and Future Estimated GHG Emissions by Project Alternatives, without Pavley Clean Car Standards (in metric tons/day)

<table>
<thead>
<tr>
<th>Segment No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing</td>
<td>273.9</td>
<td>108.9</td>
<td>78.8</td>
<td>60.6</td>
<td>69.0</td>
<td>66.2</td>
<td>51.5</td>
<td>48.4</td>
<td>92.1</td>
</tr>
<tr>
<td>2018 No-Build</td>
<td>313.7</td>
<td>126.0</td>
<td>94.8</td>
<td>76.1</td>
<td>81.2</td>
<td>79.7</td>
<td>63.6</td>
<td>62.4</td>
<td>124.9</td>
</tr>
<tr>
<td>HOT</td>
<td>304.7</td>
<td>126.3</td>
<td>95.1</td>
<td>76.2</td>
<td>86.9</td>
<td>84.5</td>
<td>67.0</td>
<td>65.2</td>
<td>132.0</td>
</tr>
<tr>
<td>2035 No-Build</td>
<td>402.2</td>
<td>169.3</td>
<td>126.5</td>
<td>95.6</td>
<td>104.9</td>
<td>102.0</td>
<td>81.5</td>
<td>84.1</td>
<td>188.2</td>
</tr>
<tr>
<td>HOT</td>
<td>370.9</td>
<td>164.7</td>
<td>120.4</td>
<td>94.1</td>
<td>108.2</td>
<td>105.6</td>
<td>85.1</td>
<td>83.3</td>
<td>176.7</td>
</tr>
</tbody>
</table>

Source: Analysis for Greenhouse Gas and Other Pollutants (Caltrans, January 2013)

Table 4.B Existing and Future Estimated GHG Emissions by Project Alternatives, with Pavley Clean Car Standards (in metric tons/day)

<table>
<thead>
<tr>
<th>Segment No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing</td>
<td>273.0</td>
<td>108.6</td>
<td>78.6</td>
<td>60.4</td>
<td>68.8</td>
<td>66.0</td>
<td>51.3</td>
<td>48.3</td>
<td>91.8</td>
</tr>
<tr>
<td>2018 No-Build</td>
<td>253.3</td>
<td>102.2</td>
<td>77.1</td>
<td>62.0</td>
<td>66.5</td>
<td>65.2</td>
<td>52.1</td>
<td>51.0</td>
<td>102.4</td>
</tr>
<tr>
<td>HOT</td>
<td>246.6</td>
<td>102.5</td>
<td>77.4</td>
<td>62.2</td>
<td>71.3</td>
<td>69.2</td>
<td>55.0</td>
<td>53.5</td>
<td>108.7</td>
</tr>
<tr>
<td>2035 No-Build</td>
<td>276.7</td>
<td>117.8</td>
<td>88.6</td>
<td>67.7</td>
<td>75.3</td>
<td>72.9</td>
<td>58.5</td>
<td>60.2</td>
<td>134.6</td>
</tr>
<tr>
<td>HOT</td>
<td>256.3</td>
<td>114.7</td>
<td>84.5</td>
<td>66.6</td>
<td>77.4</td>
<td>75.3</td>
<td>60.9</td>
<td>59.7</td>
<td>127.3</td>
</tr>
</tbody>
</table>

Source: Analysis for Greenhouse Gas and Other Pollutants (Caltrans, January 2013)

4.4.2.2 Comparison with CEQA Baseline (Year 2010 Emissions)

Results in red indicate increase compared to the respective years while those in yellow indicate decrease in future No-Build conditions when compared to the existing year. The data in Tables 4.A and 4.B indicate that the future daily operational CO\(_2\) emissions for the Build Alternative (except for Segment 1 and other Segments in 2035) are in general anticipated to increase when compared to the existing level. The daily operational CO\(_2\) emissions for future No-Build alternative, in the mean time, are anticipated to decrease in only a few Segments in 2018 with the Pavley Clean Car Standards. However, the CO\(_2\) emissions for the No-Build Alternative are expected to increase, even with the Pavley Standards, for all Segments along the I-5 in 2035.

4.4.2.3 Comparison with the No-Build Alternative (NEPA Baseline)

The data in Tables 4.A and 4.B indicate that all Segments except for Segment 1 under HOT Lanes Alternative are anticipated to result in increase in CO\(_2\) emissions when
compared to the No-Build Alternative in 2018. However, several Segments under the HOT Lanes Alternative are anticipated to decrease in CO\textsubscript{2} emissions in 2035 when compared to the No-Build, with or without the Pavley standards.

4.4.3 Construction Emissions

Greenhouse gas emissions for transportation projects can be divided into those produced during construction and those produced during operations. Construction GHG emissions include emissions produced as a result of material processing, emissions produced by onsite construction equipment, and emissions arising from traffic delays due to construction. These emissions will be produced at different levels throughout the construction phase; their frequency and occurrence can be reduced through innovations in plans and specifications and by implementing better traffic management during construction phases. In addition, with innovations such as longer pavement lives, improved traffic management plans, and changes in materials, the GHG emissions produced during construction can be mitigated to some degree by longer intervals between maintenance and rehabilitation events.

4.4.4 Greenhouse Gas Reduction Strategies

Caltrans continues to be actively involved on the Governor’s Climate Action Team as ARB works to implement Executive Orders S-3-05 and S-01-07 and help achieve the targets set forth in AB 32. Many of the strategies Caltrans is using to help meet the targets in AB 32 come from the California Strategic Growth Plan, which is updated each year. Former Governor Arnold Schwarzenegger’s Strategic Growth Plan calls for a $222 billion infrastructure improvement program to fortify the state’s transportation system, education, housing, and waterways, including $100.7 billion in transportation funding during the next decade. The Strategic Growth Plan targets a significant decrease in traffic congestion below today’s level and a corresponding reduction in GHG emissions.

The Strategic Growth Plan proposes to do this while accommodating growth in population and the economy. A suite of investment options has been created that combined together are expected to reduce congestion. The Strategic Growth Plan relies on a complete systems approach to attain CO\textsubscript{2} reduction goals: system monitoring and evaluation, maintenance and preservation, smart land use and demand management, and operational improvements, as depicted in Figure 4.3.
Caltrans is supporting efforts to reduce vehicle miles traveled by planning and implementing smart land use strategies: job/housing proximity, developing transit-oriented communities, and high density housing along transit corridors. Caltrans works closely with local jurisdictions on planning activities but does not have local land use planning authority. Caltrans also assists efforts to improve the energy efficiency of the transportation sector by increasing vehicle fuel economy in new cars, light and heavy-duty trucks; Caltrans is doing this by supporting on-going research efforts at universities, by supporting legislative efforts to increase fuel economy, and by its participation on the Climate Action Team. It is important to note, however, that the control of the fuel economy standards is held by U.S. EPA and ARB.

Table 4.C summarizes Caltrans and statewide efforts that Caltrans is implementing in order to reduce GHG emissions. More detailed information about each strategy is included in the Climate Action Program at Caltrans (December 2006).
<table>
<thead>
<tr>
<th>Strategy</th>
<th>Program</th>
<th>Partnership Lead</th>
<th>Method/Process</th>
<th>Estimated CO₂ Savings (MMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2010</td>
<td>2020</td>
</tr>
<tr>
<td>Smart Land Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intergovernmental Review (IGR)</td>
<td>Caltrans</td>
<td>Review and seek to mitigate development proposals</td>
<td>Not Estimated</td>
</tr>
<tr>
<td></td>
<td>Planning Grants</td>
<td>Caltrans</td>
<td>Competitive selection process</td>
<td>Not Estimated</td>
</tr>
<tr>
<td></td>
<td>Regional Plans and Blueprint Planning</td>
<td>Regional Agencies</td>
<td>Regional plans and application process</td>
<td>.975</td>
</tr>
<tr>
<td>Operational Improvements & Intelligent Transportation System (ITS) Deployment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategic Growth Plan</td>
<td>Caltrans</td>
<td>State ITS; Congestion Management Plan</td>
<td>.07</td>
</tr>
<tr>
<td>Mainstream Energy & GHG into Plans and Projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Office of Policy Analysis & Research; Division of Environmental Analysis</td>
<td>Interdepartmental effort</td>
<td>Policy establishment, guidelines, technical assistance</td>
<td>Not Estimated</td>
</tr>
<tr>
<td>Educational & Information Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Office of Policy Analysis & Research</td>
<td>Interdepartmental, CalEPA, ARB, CEC</td>
<td>Analytical report, data collection, publication, workshops, outreach</td>
<td>Not Estimated</td>
</tr>
<tr>
<td>Fleet Greening & Fuel Diversification</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Division of Equipment</td>
<td>Department of General Services</td>
<td>Fleet Replacement B20 B100</td>
<td>.0045</td>
</tr>
<tr>
<td>Non-vehicular Conservation Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energy Conservation Program</td>
<td>Green Action Team</td>
<td>Energy Conservation Opportunities</td>
<td>.117</td>
</tr>
<tr>
<td>Portland Cement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Office of Rigid Pavement</td>
<td>Cement and Construction Industries</td>
<td>2.5 % limestone cement mix 25% fly ash cement mix > 50% fly ash/slag mix</td>
<td>1.2</td>
</tr>
<tr>
<td>Goods Movement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.4.5 Adaptation Strategies

“Adaptation strategies” refer to how Caltrans and others can plan for the effects of climate change on the state’s transportation infrastructure and strengthen or protect the facilities from damage. Climate change is expected to produce increased variability in precipitation, rising temperatures, rising sea levels, variability in storm surges and intensity, and the frequency and intensity of wildfires. These changes may affect the transportation infrastructure in various ways, such as damage to roadbeds from longer periods of intense heat; increasing storm damage from flooding and erosion; and inundation from rising sea levels. These effects will vary by location and may, in the most extreme cases, require that a facility be relocated or redesigned. There may also be economic and strategic ramifications as a result of these types of impacts to the transportation infrastructure.

At the federal level, the Climate Change Adaptation Task Force, co-chaired by the Council on Environmental Quality (CEQ), the Office of Science and Technology Policy (OSTP), and the National Oceanic and Atmospheric Administration (NOAA), released its interagency report on October 14, 2010 outlining recommendations to President Obama for how federal agency policies and programs can better prepare the U.S. to respond to the impacts of climate change. The Progress Report of the Interagency Climate Change Adaptation Task Force recommends that the federal government implement actions to expand and strengthen the nation’s capacity to better understand, prepare for, and respond to climate change.

Climate change adaption must also involve the natural environment as well. Efforts are underway on a statewide-level to develop strategies to cope with impacts to habitat and biodiversity through planning and conservation. The results of these efforts will help California agencies plan and implement mitigation strategies for programs and projects.

On November 14, 2008, former Governor Arnold Schwarzenegger signed EO S-13-08 which directed a number of state agencies to address California’s vulnerability to sea level rise caused by climate change. This EO set in motion several agencies and actions to address the concern of sea level rise.

The California Natural Resources Agency (Resources Agency) was directed to coordinate with local, regional, state, and federal public and private entities to
develop. The California Climate Adaptation Strategy (Dec 2009)\(^7\), which summarizes the best known science on climate change impacts to California, assesses California's vulnerability to the identified impacts, and then outlines solutions that can be implemented within and across state agencies to promote resiliency.

The strategy outline is in direct response to EO S-13-08 that specifically asked the Resources Agency to identify how state agencies can respond to rising temperatures, changing precipitation patterns, sea level rise, and extreme natural events. Numerous other state agencies were involved in the creation of the Adaptation Strategy document, including the California Environmental Protection Agency; Business, Transportation and Housing; Health and Human Services; and the Department of Agriculture. The document is broken down into strategies for different sectors that include: Public Health; Biodiversity and Habitat; Ocean and Coastal Resources; Water Management; Agriculture; Forestry; and Transportation and Energy Infrastructure. As data continues to be developed and collected, the state's adaptation strategy will be updated to reflect current findings.

The Resources Agency was also directed to request the National Academy of Science to prepare a Sea Level Rise Assessment Report by December 2010\(^8\) to advise how California should plan for future sea level rise. The report is to include:

- Relative sea level rise projections for California, Oregon and Washington taking into account coastal erosion rates, tidal impacts, El Niño and La Niña events, storm surge and land subsidence rates.
- The range of uncertainty in selected sea level rise projections.
- A synthesis of existing information on projected sea level rise impacts to state infrastructure (such as roads, public facilities and beaches), natural areas, and coastal and marine ecosystems.
- A discussion of future research needs regarding sea level rise.

Prior to the release of the final Sea Level Rise Assessment Report, all state agencies that are planning to construct projects in areas vulnerable to future sea level rise were directed to consider a range of sea level rise scenarios for the years 2050 and 2010 in

order to assess project vulnerability and, to the extent feasible, reduce expected risks and increase resiliency to sea level rise. Sea level rise estimates should also be used in conjunction with information regarding local uplift and subsidence, coastal erosion rates, predicted higher high water levels, storm surge and storm wave data.

Interim guidance has been released by The Coastal Ocean Climate Action Team (CO-CAT) as well as Caltrans as a method to initiate action and discussion of potential risks to the states infrastructure due to projected sea level rise.

All projects that have filed a Notice of Preparation (NOP) as of the date of the EO S-13-08, and/or are programmed for construction funding through 2013, or are routine maintenance projects may, but are not required to, consider these planning guidelines. The proposed I-5 HOT Lane project is outside the coastal zone and direct impacts to transportation facilities due to projected sea level rise are not expected.

Executive Order S-13-08 also directed the Business, Transportation, and Housing Agency to prepare a report to assess vulnerability of transportation systems to sea level rise affecting safety, maintenance and operational improvements of the system, and economy of the state. Caltrans continues to work on assessing the transportation system vulnerability to climate change, including the effect of sea level rise.

Currently, Caltrans is working to assess which transportation facilities are at greatest risk from climate change effects. However, without statewide planning scenarios for relative sea level rise and other climate change effects, Caltrans has not been able to determine what change, if any, may be made to its design standards for its transportation facilities. Once statewide planning scenarios become available, Caltrans will be able review its current design standards to determine what changes, if any, may be warranted in order to protect the transportation system from sea level rise.

Climate change adaptation for transportation infrastructure involves long-term planning and risk management to address vulnerabilities in the transportation system from increased precipitation and flooding; the increased frequency and intensity of storms and wildfires; rising temperatures; and rising sea levels. Caltrans is an active participant in the efforts being conducted in response to EO S-13-08 and is mobilizing to be able to respond to the National Academy of Science Sea Level Rise Assessment Report.